Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1818 = (2x)3 – (1212)3 = (2x - 1212)[(2x)2 + 2x . 1212 + (1212)2]
= (2x - 1212)(4x2 + x + 1414)
d) 125125x2 – 64y2 = (15x)2(15x)2- (8y)2 = (1515x + 8y)(1515x - 8y)
a) x2 + 6x + 9 = x2 + 2.3x + 32 = (x + 3)2
b) 10x – 25 – x2 = -(x2 -10x + 25) = -(x2 -2.5x + 52)
= -(x – 5)2
c) 8x3 – 1/8= (2x)3 – ( 1/2)3 = (2x – 1/2)[(2x)2 + 2x . 1/2+ (1/2)2]
= (2x – 1/2)(4x2 + x + 1/4)
d) 1/25x2 – 64y2 = (1/5 x)2– (8y)2 = ( 1/5 x + 8y)(1/5x- 8y)
1) \(4x^2+4x+1=\left(2x+1\right)^2\)
2)\(9x^2-24xy+16y^2=\left(3x-4y\right)^2\)
3)\(-x^2+10x-25=-\left(x-5\right)^2\)
4)\(1+12x+36x^2=\left(1+6x\right)^2\)
5) \(\dfrac{x^2}{4}+2xy+4y^2=\left(\dfrac{x}{2}+2y\right)^2\)
6) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)
a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)
Bài giải:
1.
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1818 = (2x)3 – (1212)3 = (2x - 1212)[(2x)2 + 2x . 1212 + (1212)2]
= (2x - 1212)(4x2 + x + 1414)
d) 125125x2 – 64y2 = (15x)2(15x)2- (8y)2 = (1515x + 8y)(1515x - 8y)
2.
a) x3 + 127127 = x3 + (1313)3 = (x + 1313)(x2 – x . 1313+ (1313)2)
=(x + 1313)(x2 – 1313x + 1919)
b) (a + b)3 – (a - b)3
= [(a + b) – (a – b)][(a + b)2 + (a + b) . (a – b) + (a – b)2]
= (a + b – a + b)(a2 + 2ab + b2 + a2 – b2 + a2 – 2ab + b2)
= 2b . (3a3 + b2)
c) (a + b)3 + (a – b)3 = [(a + b) + (a – b)][(a + b)2 – (a + b)(a – b) + (a – b)2]
= (a + b + a – b)(a2 + 2ab + b2 – a2 +b2 + a2 – 2ab + b2]
= 2a . (a2 + 3b2)
d) 8x3 + 12x2y + 6xy2 + y3 = (2x)3 + 3 . (2x)2 . y +3 . 2x . y + y3 = (2x + y)3
e) - x3 + 9x2 – 27x + 27 = 27 – 27x + 9x2 – x3 = 33 – 3 . 32 . x + 3 . 3 . x2 – x3 = (3 – x)3
b) 6x - 9 - x2
= - (x2 - 6x + 9 )
= - ( x2 - 2.x.3 + 32 )
= - ( x - 3 )2
c) x2 - 16
= x2 - 42
= ( x - 4 )( x + 4)
d) 9x2 - 25
= ( 3x )2 - 52
= ( 3x - 5 )( 3x + 5 )
e ) x4 - y4
= ( x2)2 - ( y2 )2
= ( x2 - y2 )( x2 + y2 )
f) x6 -y6
= ( x3 )2 - ( y3)2
=( x3 - y3 )( x3 + y3 )
g) 8x3 - \(\dfrac{1}{27}\)
= ( 2x )3 - ( \(\dfrac{1}{3}\))3
= ( 2x - \(\dfrac{1}{3}\) ) ( 2x + \(\dfrac{2}{3}\)x + \(\dfrac{1}{3}\))
a , \(16x^2+8x+1=\left(4x\right)^2+2.4x.1+1^2=\left(4x+1\right)^2\)
b , \(x^2-x+\dfrac{1}{4}=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(x-\dfrac{1}{2}\right)^2\)
a,(4x+1)2 e,\(\left(\dfrac{3}{2}x-\dfrac{2}{5}\right)^2\)
b,(x-\(\dfrac{1}{2}\))2 g,\(\left(xy+1\right)^2\)
c,(\(x+\dfrac{3}{2}\))2 h,\(\left(x+5\right)^2\)
d,\(\left(x-\dfrac{5}{4}\right)^2\) i,\(-\left(x-6\right)^2\)
k,\(-\left(2x+3\right)^2\)
a: \(=\dfrac{x}{y\left(x-y\right)}+\dfrac{2x-y}{y\left(x-y\right)}=\dfrac{x+2x-y}{y\left(x-y\right)}=\dfrac{3x-y}{y\left(x-y\right)}\)
b: \(=\dfrac{x\left(x+3\right)}{\left(x+3\right)^2}+\dfrac{3}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x}{x+3}+\dfrac{3}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x^2-3x+3x+9-6x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x-3}{x+3}\)
c: \(=\dfrac{x+9}{\left(x-3\right)\left(x+3\right)}-\dfrac{3}{x\left(x+3\right)}\)
\(=\dfrac{x^2+9x-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x^2+9x-3x+9}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x+3}{x-3}\)
d: \(=\dfrac{x^2-1-x^2+4}{x+1}=\dfrac{3}{x+1}\)
a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)
\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\) MTC: \(xy\left(x-2y\right)\left(x+2y\right)\)
\(=\dfrac{2x.y\left(x-2y\right)}{xy\left(x+2y\right)\left(x-2y\right)}+\dfrac{y.x\left(x+2y\right)}{xy\left(x-2y\right)\left(x+2y\right)}+\dfrac{4.xy}{xy\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{2x^2y-4xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{3x^2y-2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
b) \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)
\(=\dfrac{1}{x-y}-\dfrac{3xy}{x^3-y^3}+\dfrac{x-y}{x^2+xy+y^2}\)
\(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\) MTC: \(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{\left(x-y\right)\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{\left(x^2+xy+y^2\right)-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)
a) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)
b) \(-x^2+2xy-y^2=-\left(x-y\right)^2\)
c) \(-4x^4-4x^2=-4x^2\left(x^2-1\right)=-4x^2\left(x-1\right)\left(x+1\right)\)
d) \(\dfrac{1}{9}x^2-\dfrac{2}{3}x+1=\left(\dfrac{1}{3}x-1\right)^2\)
e) \(\left(4x^2+1\right)^2-16x^2=\left(4x^2+1+4x^2\right)\left(4x^2+1-4x^2\right)=8x^2+1\)
f) \(16x^2-\left(x^2+4\right)^2=\left(4x^2+x^2+4\right)\left(4x^2-x^2-4\right)=\left(5x^2+4\right)\left(3x^2-4\right)\)
g) \(x^2+6x^2+12x+8=\left(x+2\right)^3\)
h) \(27x^3-54x^2+36x-8=\left(3x-2\right)^3\)
i) \(x^3-\dfrac{3}{2}x^2+\dfrac{3}{4}x-\dfrac{1}{8}=\left(x-\dfrac{1}{2}\right)^3\)
k) \(0,125x^3-0,75x^2+1,5x-1=\left(0,5-1\right)^3\)
Câu a :
\(x^2+6x+9=\left(x+3\right)^2\)
Câu b :
\(10x-25-x^2=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\)
Câu c :
\(8x^3-\dfrac{1}{8}=\left(2x\right)^3-\left(\dfrac{1}{2}\right)^3\) \(=\left(2x-\dfrac{1}{2}\right)\left[\left(2x\right)^2+\dfrac{1}{2}.2x+\left(\dfrac{1}{2}\right)^2\right]\)
Cau d :
\(\dfrac{1}{25}x^2-64y^2=\left(\dfrac{1}{5}\right)^2-\left(8y\right)^2=\left(\dfrac{1}{5}+8\right)\left(\dfrac{1}{5}-8\right)\)
mình thấy hơi kỳ kỳ ấy nhỉ