K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2020

D là câu gì

26 tháng 7 2020

Hoàng Việt Bách :D là icon

4 tháng 10 2021

1) \(\dfrac{1}{27}+a^3=\left(\dfrac{1}{3}+a\right)\left(\dfrac{1}{9}-\dfrac{a}{3}+a^2\right)\)

2) \(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

3) \(=\left(\dfrac{1}{2}x+2y\right)\left(\dfrac{1}{4}x-xy+4y^2\right)\)

4) \(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)

5) \(=\left(x^3+1\right)\left(x^6-x^3+1\right)\)

6) \(=\left(x-4\right)\left(x^2+4x+16\right)\)

7) \(=\left(x-5\right)\left(x^2+5x+25\right)\)

8) \(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)

9) \(=\left(\dfrac{1}{4}x^2-5y\right)\left(\dfrac{1}{16}x^4+\dfrac{5}{4}x^2y+25y^2\right)\)

10) \(=\left(\dfrac{1}{2}x-2\right)\left(\dfrac{1}{4}x^2+x+4\right)\)

11) \(=\left(x+2\right)^3\)

12) \(=\left(x+3\right)^3\)

 

4 tháng 10 2021

cảm ơn bạn ;-;

 

22 tháng 10 2018

1. a) \(8x^3-32x=8x\left(x^2-4\right)=8x\left(x-4\right)\left(x+4\right)\)

b) \(y^3+64+\left(y+4\right)\left(y-16\right)=\left(y^3+4^3\right)+\left(y+4\right)\left(y-16\right)\)

\(=\left(y+4\right)\left(y^2-4y+16\right)+\left(y+4\right)\left(y-16\right)=\left(y+4\right)\left(y^2-4y+16+y-16\right)\)

\(=\left(y-4\right)\left(y^2-3y\right)=\left(y-4\right)y\left(y-3\right)\)

2) a)

\(4x^3-9x=0\)

\(\Leftrightarrow x\left(4x^2-9\right)=0\)

\(\Leftrightarrow x\left(2x+3\right)\left(2x-3\right)=0\)

<=> x=0 hoặc 2x+3=0 hoặc 2x-3=0

<=> x=0 hoặc x=-3/2 hoặc x=3/2

b) \(A=x^3-9x^2+27x-27=x^3-3.x^2.3+3.x.3^2-3^3=\left(x-3\right)^3\)

Tại x=203

A=(203-3)3=2003

22 tháng 10 2018

Bài 1 :

a) \(8x^3-32x\)

\(=8x\left(x^2-4\right)\)

\(=8x\left(x-2\right)\left(x+2\right)\)

b) \(y^3+64+\left(y+4\right)\left(y-16\right)\)

\(=\left(y^3+4^3\right)+\left(y+4\right)\left(y-16\right)\)

\(=\left(y+4\right)\left(y^2-4y+16\right)+\left(y+4\right)\left(y-16\right)\)

\(=\left(y+4\right)\left(y^2-4x+16+y-16\right)\)

\(=\left(y+4\right)\left(y^2+y-4x\right)\)

Bài 2 :

a) \(4x^3-9x=0\)

\(x\left(4x^2-9\right)=0\)

\(x\left[\left(2x\right)^2-3^2\right]=0\)

\(x\left(2x-3\right)\left(2x+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\2x-3=0\\2x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\\x=\frac{-3}{2}\end{cases}}}\)

P.s: ở trên dùng ngoặc vuông nhé

b) \(A=x^3-9x^2+27x-27\)

\(A=x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3\)

\(A=\left(x-3\right)^3\)

Thay x = 203 vào biểu thức ta có :

\(A=\left(203-3\right)^3\)

\(A=200^3\)

\(A=8000000\)

6 tháng 10 2018

\(a.x^3-6x=x^3-4^3=\left(x-4\right)\left(x^2+4x+16\right)\)

\(b.x^4+6x^3+11x^2+6x+1=x^4+6x^3+9x^2+2x^2+6x+1\)

\(=\left(x^2+3x+1\right)^2\)

\(c.x^2+3x+2=x^2+x+2x+2=x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(x+2\right)\)

\(d.x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=x\left(x+3\right)\left(x+1\right)\left(x+2\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)

Đặt \(x^2+3x=y\Rightarrow y\left(y+2\right)+1=y^2+2y+1=\left(y+1\right)^2\)

Thay \(y=x^2+3x\) ta được: \(\left(y+1\right)^2=\left(x^2+3x+1\right)^2\)

\(e.x^3+9x^2+27x+27=\left(x+3\right)^3\)

\(f.\left(x+1\right)\left(x+7\right)\left(x^2+8x+15\right)+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(a=x^2+8x+11\Rightarrow\left(a-4\right)\left(a+4\right)+15=a^2-16+15=a^2-1=\left(a+1\right)\left(a-1\right)\)

Thay \(a=x^2+8x+11\) ta được: \(\left(a+1\right)\left(a-1\right)=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

6 tháng 10 2018

\(x^3-6x=x^3-64\) ??? . Căng nhể -.-

22 tháng 10 2021

\(a,=x^2-4x+4-\dfrac{15}{4}=\left(x-2\right)^2-\dfrac{15}{4}=\left(x-2-\dfrac{\sqrt{15}}{2}\right)\left(x-2+\dfrac{\sqrt{15}}{2}\right)\\ b,=?\\ c,\Rightarrow x^2+7x-8=0\\ \Rightarrow\left(x+8\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-8\\x=1\end{matrix}\right.\\ d,Sửa:x^3-3x^2=-27+9x\\ \Rightarrow x^3-3x^2+9x-27=0\\ \Rightarrow x^2\left(x-3\right)+9\left(x-3\right)=0\\ \Rightarrow\left(x^2+9\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-9\left(vô.lí\right)\\x=3\end{matrix}\right.\\ \Rightarrow x=3\\ e,\Rightarrow x\left(x-3\right)-7x+21=0\\ \Rightarrow x\left(x-3\right)-7\left(x-3\right)=0\\ \Rightarrow\left(x-7\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\\ f,\Rightarrow x^2\left(x-2\right)+\left(x-2\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=2\end{matrix}\right.\\ \Rightarrow x=2\)

\(g,\Rightarrow x^2-4x+4=0\\ \Rightarrow\left(x-2\right)^2=0\\ \Rightarrow x=2\\ h,Sửa:x^3-x^2+x=1\\ \Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=1\end{matrix}\right.\\ \Rightarrow x=1\)

22 tháng 10 2021

cảm ơn kou nhaa:3

mà cái ý b đầu bài là 8x\(^2-25\), kou giải giúp tớ uwu

16 tháng 10 2020

Bài 1: Tìm x

a) Ta có: \(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\Leftrightarrow4x^2+4x+1-4\left(x^2+4x+4\right)-9=0\)

\(\Leftrightarrow4x^2+4x+1-4x^2-16x-16-9=0\)

\(\Leftrightarrow-12x-24=0\)

\(\Leftrightarrow-12x=24\)

hay x=-2

Vậy: x=-2

b) Ta có: \(\left(3x-1\right)^2+2\left(x+3\right)^2+11\left(x+1\right)\left(1-x\right)=6\)

\(\Leftrightarrow9x^2-6x+1+2\left(x^2+6x+9\right)-11\left(x-1\right)\left(x+1\right)-6=0\)

\(\Leftrightarrow9x^2-6x+1+2x^2+12x+18-11\left(x^2-1\right)-6=0\)

\(\Leftrightarrow11x^2+6x+12-11x^2+11=0\)

\(\Leftrightarrow6x+23=0\)

\(\Leftrightarrow6x=-23\)

hay \(x=-\frac{23}{6}\)

Vậy: \(x=-\frac{23}{6}\)

c) Ta có: \(8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

hay \(x=\frac{1}{2}\)

Vậy: \(x=\frac{1}{2}\)

d) Ta có: \(x^3+9x^2+27x+27=0\)

\(\Leftrightarrow x^3+3\cdot x^2\cdot3+3\cdot x\cdot3^2+3^3=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Leftrightarrow x+3=0\)

hay x=-3

Vậy: x=-3

16 tháng 10 2020

a) (2x + 1)2 - 4(x + 2)2 = 9

4x2 + 4x + 1 - 4(x2 + 4x + 4) = 9

4x2 + 4x + 1 - 4x2 - 16x - 16 = 9

-12x - 15 = 9

-12x = 9 + 15

-12x = 24

x = 12 : (-2)

x = -2

b) (3x - 1)2 + 2(x + 3)2 + 11(x + 1)(1 - x) = 6

9x2 - 6x + 1 + 2(x2 + 6x + 9) - 11(x + 1)(x - 1) = 6

9x2 - 6x + 1 + 2x2 + 12x + 18 - 11(x2 - 1) = 6

9x2 - 6x + 1 + 2x2 + 12x + 18 - 11x2 + 11 = 6

6x + 30 = 6

6x = 6 - 30

6x = -24

x = -24 : 6

x = -4

c) 8x3 - 12x2 + 6x - 1 = 0

(2x)3 - 3.(2x)2.1 + 3.2x.12 - 13 = 0

(2x - 1)3 = 0

2x - 1 = 0

2x = 1

x = 1/2

d) x3 + 9x2 + 27x + 27 = 0

x3 + 3.x2.3 + 3.x.32 + 33 = 0

(x + 3)3 = 0

x + 3 = 0

x = 0 - 3

x = -3

9 tháng 1 2016

CẦN GẤP M.N ƠI

 

10 tháng 1 2016

haaaaaaaaaaaaaa

 

a, 4x2 - 49 = 0

⇔⇔ (2x)2 - 72 = 0

⇔⇔ (2x - 7)(2x + 7) = 0

⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72

b, x2 + 36 = 12x

⇔⇔ x2 + 36 - 12x = 0

⇔⇔ x2 - 2.x.6 + 62 = 0

⇔⇔ (x - 6)2 = 0

⇔⇔ x = 6

e, (x - 2)2 - 16 = 0

⇔⇔ (x - 2)2 - 42 = 0

⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0

⇔⇔ (x - 6)(x + 2) = 0

⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2

f, x2 - 5x -14 = 0

⇔⇔ x2 + 2x - 7x -14 = 0

⇔⇔ x(x + 2) - 7(x + 2) = 0

⇔⇔ (x + 2)(x - 7) = 0

⇔{x+2=0x−7=0⇔{x=−2x=7

8 tháng 7 2016

a) Ta có x^3 - 3x^2 +3x -1= (x-1)^3     ( Hăng đẳng thức (a-b)^3=a^3 - 3a^2b +3ab^2 - b^3)

Mà: x=101 nên (x-1)^3 = (101-1)^3 = 100^3= 1000000

b,c,d tương tự bạn tự lm nhé ^_^

Bài 1: 

a: \(x^3-6x^2+11x-6\)

\(=x^3-x^2-5x^2+5x+6x-6\)

\(=\left(x-1\right)\left(x^2-5x+6\right)\)

\(=\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

b: \(x^3-6x^2-9x+14\)

\(=x^3-7x^2+x^2-7x-2x+14\)

\(=\left(x-7\right)\left(x^2+x-2\right)\)

\(=\left(x-7\right)\left(x+2\right)\left(x-1\right)\)

c: \(x^3+6x^2+11x+6\)

\(=x^3+3x^2+3x^2+9x+2x+6\)

\(=\left(x+3\right)\left(x^2+3x+2\right)\)

\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)