K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2019

a) \(f\left(x\right)=4x^3-2x^2+5x+1-4x^3+3x^2-4x-1\) 

\(f\left(x\right)=x^2+x\) 

b) Bạn tự làm nhé

c) Ta có \(f\left(x\right)=0\Leftrightarrow x^2+x=0\) 

                                   \(x\left(x+1\right)=0\) 

 \(\Rightarrow x=0\) hoặc \(x+1=0\Leftrightarrow x=-1\) 

Vậy \(x\in\left\{0;-1\right\}\)

10 tháng 7 2019

a) Ta có: (4x3 - 2x2 + 5x + 1) - f(x) = 4x3 - 3x2 + 4x + 1

=> f(x) = (4x3 - 2x2 + 5x + 1) - (4x3 - 3x2 + 4x + 1)

=> f(x) = 4x3 - 2x2 + 5x + 1 - 4x3 + 3x2 - 4x - 1

=> f(x) = (4x3 - 4x3) - (2x2 - 3x2) + (5x - 4x) + (1 - 1)

=> f(x) = x2 + x 

b) Bậc của f(x) : 2

Hệ số cao nhất là : 1

c) Ta có : f(x) = 0

=> x2 + x = 0

=> x(x + 1) = 0

=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy x = 0 và x = -1 là nghiệm của f(x)

3 tháng 4 2023

a) \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4+x^4+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(4x^4+x^4-x^4\right)+\left(5x^3-4x^3\right)+\left(3x^2-2x^2\right)+1\)

\(f\left(x\right)=1+x^2+x^3+4x^4+2x^6\)

Hệ số cao nhất là 4, đa thức có bậc là 6, hệ số tự do là 1

b) Khi \(f\left(-1\right)\) thì đa thức trở thành:

\(f\left(-1\right)=2.\left(-1\right)^6+4.\left(-1\right)^4+\left(-1\right)^3+\left(-1\right)^2+1\)

\(f\left(-1\right)=2+4+-1+1+1\)

\(f\left(-1\right)=7\)

c) Vì \(2x^6+4x^4+x^3+x^2+1\ge0\) nên đa thức \(f\left(x\right)\) không có nghiệm

18 tháng 3 2019

- Ta có:

Trắc nghiệm: Cộng, trừ đa thức một biến - Bài tập Toán lớp 7 chọn lọc có đáp án, lời giải chi tiết

Hệ số cần tìm là -11

Chọn đáp án C

7 tháng 5 2019

+) Ta có

2 g ( x ) = 2 − x 4 + 2 x 3 − 3 x 2 + 4 x + 5 = − 2 x 4 + 4 x 3 − 6 x 2 + 8 x + 10  Ta có  f ( x ) − 2 ⋅ g ( x ) = 5 x 4 + 4 x 3 − 3 x 2 + 2 x − 1 − − 2 x 4 + 4 x 3 − 6 x 2 + 8 x + 10 = 5 x 4 + 4 x 3 − 3 x 2 + 2 x − 1 + 2 x 4 − 4 x 3 + 6 x 2 − 8 x − 10 = 5 x 4 + 2 x 4 + 4 x 3 − 4 x 3 + − 3 x 2 + 6 x 2 + ( 2 x − 8 x ) − 1 − 1 = 7 x 4 + 3 x 2 − 6 x − 11

Hệ số cần tìm là -11

Chọn đáp án C

5 tháng 5 2023

\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)

Bậc của đa thức : \(3\)

Hệ số cao nhất ứng với hệ số của số mũ cao nhất : \(1\)

b, \(B\left(x\right)=A\left(x\right).\left(x-1\right)\\ =\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-10x-x+10\\ =x^4-x^3+x^2-11x+10\)

\(B\left(2\right)=2^4-2^3+2^2-11.2+10=0\)

18 tháng 8 2020

a, \(f\left(x\right)=4x^3-2x^2+5x+1-4x^3-3x^2+4x+1\)

\(=-5x^2+9x+2\)

b, Hệ số cao nhất : -5 hệ số tự do : 2

c, \(-5x^2+9x+2\Leftrightarrow-\left(5x+1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{5}\\x=2\end{cases}}\)

3 tháng 5 2023

\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)

Bậc của đa thức \(3\)

Hệ số cao nhất là \(1\)

\(b,B\left(x\right)=A\left(x\right).\left(x-1\right)=\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-x-10x+10\\ =x^4-x^3+x^2-11x+10\)

Thay \(x=2\) vào \(B\left(x\right)\)

\(=2^4-2^3+2^2-11.2+10\\ =0\) 

Vậy tại \(x=2\) thì \(B\left(x\right)=0\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.

`a,`

`M(x) = f(x) - g(x)`

`M(x)= (x^3-2x^2+2x+1)-(x^3+x+1)`

`M(x)= x^3-2x^2+2x+1-x^3-x-1`

`M(x)= (x^3-x^3)-2x^2+(2x-x)+(1-1)`

`M(x)= -2x^2+x`

`----`

`N(x)= g(x)+h(x)`

`N(x)= (x^3+x+1)+(2x^2-1)`

`N(x)= x^3+x+1+2x^2-1`

`N(x)=x^3+x+2x^2+(1-1)`

`N(x)=x^3+x+2x^2`

`b,`

`M(x) = -2x^2+x`

Bậc của đa thức: `2`

Hệ số cao nhất: `-2`

Không có hệ số tự do.

`N(x)=x^3+x+2x^2`

Bậc của đa thức: `3`

Hệ số cao nhất: `1`

Không có hệ số tự do.

`c,`

`M(-1)=-2*(-1)^2+(-1)`

`= -2*1+(-1)`

`=-2+(-1)=-3`

`N(2)=2^3+2+2*2^2`

`N(2)= 8+2+2*4`

`N(2)=8+2+8=10+8=18`

 

`M(2)=-2*2^2+2`

`M(2)=-2*4+2`

`M(2)=-8+2=-6`

 

`N(-3)=(-3)^3+(-3)+2*(-3)^2`

`N(-3)= -27+(-3)+2*9`

`N(-3)= (-27)+(-3)+18 = (-30)+18 = -12`

a: M(x)=F(x)-G(x)

\(=x^3-2x^2+2x+1-x^3-x-1=-2x^2+x\)

N(x)=G(x)+H(x)

=x^3+x+1+2x^2-1

=x^3+2x^2+x

b: Bậc, hệ số cao nhất, hệ số tự do của M lần lượt là 2;-2;0

Bậc, hệ số cao nhất, hệ số tự do của N lần lượt là 3;1;0

c: M(x)=-2x^2+x

M(-1)=-2*(-1)^2+(-1)=-2-1=-3

M(2)=-2*2^2+2=-8+2=-6

N(x)=x(x+1)^2

N(2)=2(2+1)^2=18

N(-3)=-3(-3+1)^2=-3*4=-12

a: A(x)=-x^3+7x^2+2x-15

b: Bậc 3

c: Hệ số cao nhất là -1

Hệ số tự do là -15

d: A(x)+B(x)

=-x^3+7x^2+2x-15+4x^3-x^2+5x-15

=3x^3+6x^2+7x-30