Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
Đặt \(\sqrt{a^2+x^2}=m,\sqrt{a^2-x^2}=n\Rightarrow x^2=\frac{m^2-n^2}{2}\)
\(\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\sqrt{\frac{a^4}{x^4}-1}=\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\sqrt{\frac{(a^2+x^2)(a^2-x^2)}{x^4}}\)
\(=\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\frac{\sqrt{(a^2+x^2)(a^2-x^2)}}{x^2}\)
\(=\frac{m+n}{m-n}-\frac{mn}{\frac{m^2-n^2}{2}}=\frac{(m+n)^2}{m^2-n^2}-\frac{2mn}{m^2-n^2}=\frac{m^2+n^2}{m^2-n^2}\)
\(=\frac{2a^2}{2x^2}=\frac{a^2}{x^2}\)
2.
\(=\left[\frac{(1-\sqrt{a})(1+\sqrt{a}+a)}{1-\sqrt{a}}+\sqrt{a}\right].\left[\frac{(1+\sqrt{a})(1-\sqrt{a}+a)}{1+\sqrt{a}}-\sqrt{a}\right]\)
\(=(1+\sqrt{a}+a+\sqrt{a})(1-\sqrt{a}+a-\sqrt{a})\)
\(=(a+2\sqrt{a}+1)(a-2\sqrt{a}+1)=(\sqrt{a}+1)^2(\sqrt{a}-1)^2\)
\(=(a-1)^2\)
3.
\(=\frac{3(1-x)}{\sqrt{1+x}.\sqrt{1-x}}:\frac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}=\frac{3(1-x)}{\sqrt{1-x^2}}.\frac{\sqrt{1-x^2}}{3+\sqrt{1-x^2}}=\frac{3(1-x)}{3+\sqrt{1-x^2}}\)
4. Bạn xem lại đề xem đã đúng chưa?
5.
\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}.\frac{\sqrt{b}(a+\sqrt{ab})+\sqrt{b}(a-\sqrt{ab})}{(a-\sqrt{ab})(a+\sqrt{ab})}\)
\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}.\frac{2a\sqrt{b}}{a^2-ab}\)
\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}}.\frac{1}{a-b}\)
\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}\)
\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{1}{a+\sqrt{ab}}=\frac{\sqrt{a}+\sqrt{b}}{a+\sqrt{ab}}=\frac{1}{\sqrt{a}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 3 :
\(ĐKXĐ:x>0\)
\(P=\left(\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}\right):\frac{2\sqrt{x}}{x+2\sqrt{x}}\)
\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}\cdot\frac{x+2\sqrt{x}}{2\sqrt{x}}\)
\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}\)
b) Để P = 3
\(\Leftrightarrow\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}=3\)
\(\Leftrightarrow2\sqrt{x}+4+x=6\sqrt{x}\)
\(\Leftrightarrow x-4\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)
\(\Leftrightarrow\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\)(tm)
Vậy để \(P=3\Leftrightarrow x=4\)
Câu 1 : Hình như sai đề !! Mik sửa :
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(A=\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\right)\)
\(\Leftrightarrow A=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right):\left(\frac{x-4+10-x}{\sqrt{x}+2}\right)\)
\(\Leftrightarrow A=\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{6}{\sqrt{x}+2}\)
\(\Leftrightarrow A=\frac{-6\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow A=-\frac{1}{\sqrt{x}-2}\)
b) Để A < 2
\(\Leftrightarrow-\frac{1}{\sqrt{x}-2}< 2\)
\(\Leftrightarrow-1< 2\sqrt{x}-4\)
\(\Leftrightarrow2\sqrt{x}>3\)
\(\Leftrightarrow\sqrt{x}>1,5\)
\(\Leftrightarrow x>2,25\)
Vậy để \(A< 2\Leftrightarrow x>2,25\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a.\(DK:x\ge0\)
\(A=\frac{x-2\sqrt{x}+1}{x+1}.\frac{\left(x+1\right)\left(\sqrt{x}+1\right)}{x-2\sqrt{x}+1}=\sqrt{x}+1\)
b.Dat \(P=\frac{1}{A}\left(x+3\right)=\frac{x+3}{\sqrt{x}+1}\left(P>0\right)\)
\(\Rightarrow P\sqrt{x}+P=x+3\)
\(\Leftrightarrow x-P\sqrt{x}+3-P=0\)
Dat \(t=\sqrt{x}\left(t\ge0\right)\)
Ta co:
\(\Delta\ge0\)
\(\Leftrightarrow P^2-4\left(3-P\right)\ge0\)
\(\Leftrightarrow P^2+4P-12\ge0\)
\(\Leftrightarrow\left(P-2\right)\left(P+6\right)\ge0\)
TH1:
\(\hept{\begin{cases}P-2\ge0\\P+6\ge0\end{cases}\Leftrightarrow P\ge2}\)
TH2:
\(\hept{\begin{cases}P-2\le0\\P+6\le0\end{cases}\Leftrightarrow P\le2\left(P>0\right)}\)
Vi la de bai tim min nen lay TH1 thoi
Dau '=' xay ra khi \(x=\frac{P}{2}=1\)
Vay \(P_{min}=2\)khi \(x=1\)