K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2015

Câu A + C = C - B + A + B = B x 1,8 sai thì phải , nếu như 2 bạn trước làm thì A, B ,C là 4,5,6

A + C = C - B +A +B = B x 1,8 thay vào ko đúng

 

6 tháng 6 2015

Bài 1 là 4;5;6 bài 2 k muốn suy nghĩ nên chưa làm được

17 tháng 11 2021

\(1,a+b+c=0\Leftrightarrow a=-b-c\Leftrightarrow a^2=b^2+2bc+c^2\Leftrightarrow b^2+c^2=a^2-2bc\)

Tương tự: \(\left\{{}\begin{matrix}a^2+b^2=c^2-2ab\\c^2+a^2=b^2-2ac\end{matrix}\right.\)

\(\Leftrightarrow N=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ca}+\dfrac{c^2}{c^2-c^2+2ac}\\ \Leftrightarrow N=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{a^3+b^3+c^3-3abc+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)

22 tháng 12 2017

Cho em hỏi chút,số đội một khác nhau là gì ạ?

24 tháng 12 2017

Với a,b,c là các số đôi một khác nhau nha bạn.

2 tháng 10 2016

a)A=x(x+1)(x+2)(x+3)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)\)

Đặt \(t=x^2+3x\) ta đc:

\(t\left(t+2\right)\)\(=t^2+2t+1-1\)

\(=\left(t+1\right)^2-1\ge-1\)

Dấu = khi \(t=-1\Rightarrow x^2+3x=-1\)\(\Rightarrow\)\(x=\frac{-3\pm\sqrt{5}}{2}\)

Vậy MinA=-1 khi \(x=\frac{-3\pm\sqrt{5}}{2}\)

b)\(B=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Với a,b,c dương ta áp dụng Bđt Cô si 3 số:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Dấu = khi a=b=c

Vậy MinB=9 khi a=b=c

c)\(C=a^2+b^2+c^2\)

Áp dụng Bđt Bunhiacopski 3 cặp số ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1a+1b+1c\right)^2=\left(\frac{3}{2}\right)^2=\frac{9}{4}\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\frac{9}{4}\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{3}{4}\)

\(\Rightarrow C\ge\frac{3}{4}\)

Dấu = khi \(a=b=c=\frac{1}{2}\)

Vậy MinC=\(\frac{3}{4}\) khi \(a=b=c=\frac{1}{2}\)

15 tháng 11 2021

Bài 1:

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\left(do.a+b+c\ne0\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c\)

\(M=\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\dfrac{3a^2}{\left(3a\right)^2}=\dfrac{3a^2}{9a^2}=\dfrac{1}{3}\)

15 tháng 11 2021

Bài 2:

a) \(=\dfrac{x\left(x^2+x-6\right)}{x\left(x^2-4\right)}=\dfrac{x\left(x-2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+2\right)}=\dfrac{x+3}{x+2}\)

b) \(=\dfrac{x\left(x+1\right)+7\left(x+1\right)}{x\left(x^2+2x+1\right)}=\dfrac{\left(x+1\right)\left(x+7\right)}{x\left(x+1\right)^2}=\dfrac{x+7}{x\left(x+1\right)}=\dfrac{x+7}{x^2+x}\)