Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2e)Đặt \(A=1+3+3^2+...+3^{200}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{201}\)
\(\Rightarrow2A=3^{201}-1\)
\(\Rightarrow A=\frac{3^{201}-1}{2}\)
\(\Rightarrow A< 3^{201}\)
Hay \(1+3+3^2+...+3^{200}< 3^{201}\)
Bài 1: Tính:
a) 27 : 22 + 54 : 53. 24 - 3. 25
= 25 + 5 . 24 - 3 . 25
= 32 + 5 . 16 - 3 . 32
= 32 + 80 - 96
= 112 - 96
= 16
b) ( 37 . 35) : 310+ 5 . 24 - 73 : 7
= 312 : 310 + 5 . 24 - 72
= 32 + 5 . 24 - 72
= 9 + 5 . 16 - 49
= 9 + 80 - 49
= 89 - 49
= 40
Bài 2: Tính hợp lí:
a) ( 62007 - 62006 ) : 62006
= 62007 : 62006 - 62006 : 62006
= 6 - 1
= 5
b) ( 112003 + 112002 ) : 112002
= 11 + 1
= 12
c) 320 : ( x3 - 24 ) + 24 = 32
320 : ( x3 - 24 ) = 32 - 24 = 8
x3 - 24 = 320 : 8
x3 - 24 = 40 + 24
x3 = 64
x3 = 43 = 4
d) 130 - ( 100 + x ) = 25
( 100 + x ) = 103 - 25
100 + x = 105 - 100
x = 5
Bn ơi đừng tự ti như vậy nha !!! Mỗi người đều có một khuyết điểm mà, tri thức luôn rộng lớn bao la. Hãy làm việc đó bằng cách bn tự làm những bài kia nha.
Chúc bn hc tốt môn toán :))
2)
a) \(\left(6^{2007}-6^{2006}\right):6^{2006}\)
\(=\left(6^{2006}.6-6^{2006}.1\right):6^{2006}\)
\(=\left[6^{2006}.\left(6-1\right)\right]:6^{2006}\)
\(=6^{2006}:6^{2006}.5\)
\(=5\)
b) \(\left(11^{2003}+11^{2002}\right):11^{2002}\)
\(=\left(11^{2002}.11+11^{2002}.1\right):11^{2002}\)
\(=\left[11^{2002}.\left(11+1\right)\right]:11^{2002}\)
\(=11^{2002}:11^{2002}.12\)
\(=12\)
c) \(130:\left(x^3-24\right)+24=32\)
\(\Leftrightarrow130:\left(x^3-24\right)=32-24\)
\(\Leftrightarrow130:\left(x^3-24\right)=8\)
\(\Leftrightarrow x^3-24=\dfrac{65}{4}\)
\(\Leftrightarrow x^3=\dfrac{65}{4}+24\)
\(\Leftrightarrow x^3=\dfrac{161}{4}\)
\(\Leftrightarrow x=\sqrt[3]{\dfrac{161}{4}}\)
Vậy \(x=\sqrt[3]{\dfrac{161}{4}}\)
d) \(130-\left(100+x\right)=25\)
\(\Leftrightarrow100+x=130-25\)
\(\Leftrightarrow100+x=105\)
\(\Leftrightarrow x=105-100\)
\(\Leftrightarrow x=5\)
Vậy \(x=5\)
a: \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5+3^5}\cdot\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5+2^5+2^5+2^5+2^5}=2^x\)
\(\Leftrightarrow2^x=\dfrac{4^5}{3^5}\cdot\dfrac{6^5}{2^5}=4^5=2^{10}\)
=>x=10
b: \(\left(x-1\right)^{x+4}=\left(x-1\right)^{x+2}\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)
\(\Leftrightarrow x\left(x-1\right)^{x+2}\cdot\left(x-2\right)=0\)
hay \(x\in\left\{0;1;2\right\}\)
c: \(6\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
\(\Leftrightarrow5\cdot\left(6-x\right)^{2003}=0\)
\(\Leftrightarrow6-x=0\)
hay x=6
1/
2100=(210)10=102410>100010=10302100=(210)10=102410>100010=1030
2100=231.26.263=231.64.5127<231.125.6257=231.53.(54)7=231.531=10312100=231.26.263=231.64.5127<231.125.6257=231.53.(54)7=231.531=1031
1030<2100<10311030<2100<1031
vậy 21002100 có 31 chữ số.
Bài 1 :
a, Ta có : \(\left(-123\right)+\left|-13\right|+\left(-7\right)\)
= \(\left(-123\right)+13+\left(-7\right)=\left(-117\right)\)
b, Ta có : \(\left|-10\right|+\left|45\right|+\left(-\left|-455\right|\right)+\left|-750\right|\)
= \(10+45-455+750=350\)
c, Ta có : \(-\left|-33\right|+\left(-15\right)+20-\left|45-40\right|-57\)
= \(\left(-33\right)+\left(-15\right)+20-5-57=-90\)
Bài 1 :
a/ \(a^3.a^9=a^{3+9}=a^{12}\)
b/\(\left(a^5\right)^7=a^{5.7}=a^{35}\)
c/ \(\left(a^6\right).4.a^{12}=a^{24}.a^{12}.4=a^{24+12}.4=a^{36}.4\)
d/ \(\left(2^3\right)^5.\left(2^3\right)^3=2^{15}.2^9=2^{15+9}=2^{24}\)
e/ \(5^6:5^3+3^3.3^2\)
\(=5^3+3^5=125+243=368\)
i/ \(4.5^2-2.3^2\)
\(=2^2.5^2-2.3^2\)
\(=2^2.25-2^2.14\)
\(=2^2.\left(25-14\right)\)
\(=2^2.11\)
\(=4.11=44\)
a) \(2^x=32\)
Ta có: \(2^5=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
b) Sửa đề tí: \(9< 3^x< 81\)
\(\Rightarrow3^2< 3^x< 3^4\)
\(\Rightarrow2< x< 4\)
\(\Rightarrow x=\left\{3\right\}\)
Vậy x = 3
c) Ta có: \(25\le5^x\le125\)
\(\Rightarrow5^2\le5^x\le5^3\)
\(\Rightarrow2\le x\le3\)
\(\Rightarrow x=\left\{2;3\right\}\)
Vậy x = 2 hoặc x = 3
d) \(\left(x-2\right)^3\times5=40\)
\(\Rightarrow\left(x-2\right)^3=8\)
Mà \(8=2^3\Rightarrow\left(x-2\right)^3=2^3\)
Suy ra: x - 2 = 2
Vậy x = 4
Đặt \(A=5+5^3+5^5+....+5^{47}+5^{49}\)
\(\Rightarrow5^2A=5^3+5^5+5^7+.....+5^{49}+5^{51}\)
\(\Rightarrow5^2A-A=\left(5^3+5^5+5^7+....+5^{49}+5^{51}\right)-\left(3+3^3+3^5+....+5^{47}+5^{49}\right)\)
\(\Rightarrow24A=5^{51}-5\)
\(\Rightarrow A=\dfrac{5^{51}-5}{24}\)
Vậy ............................................................
1)a) \(\left(3x-7\right)^5=32\Rightarrow\left(3x-7\right)^5=2^5\)
\(\Rightarrow3x-7=2\Rightarrow3x=9\Rightarrow x=3\)
Vậy \(x=3\)
b) \(\left(4x-1\right)^3=-27.125\)
\(\Rightarrow\left(4x-1\right)^3=-3^3.5^3=-15^3\)
\(\Rightarrow4x-1=-15\Rightarrow4x=-14\Rightarrow x=-3,5\)
Vậy \(x=-3,5\)
c) \(3^{4x+4}=81^{x+3}\Rightarrow3^{4x+4}=3^{4x+12}\)
\(\Rightarrow4x+4=4x+12\)
\(\Rightarrow4x=4x+8\)
\(\Rightarrow x\in\varnothing\)
d) \(\left(x-5\right)^7=\left(x-5\right)^9\)
\(\Rightarrow\left(x-5\right)^7-\left(x-5\right)^9=0\)
\(\Rightarrow\left(x-5\right)^7.\left[1-\left(x-5\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^7=0\\1-\left(x-5\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x-5=-1\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)