Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a) Ta có: \(\frac{a}{c}=\frac{b}{d}.\)
\(\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}\) (1)
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}.\)
\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\left(đpcm\right).\)
2.
Chúc bạn học tốt!
Đặt
\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(VT:\frac{5a+3b}{5c+3d}=\frac{5bk+3b}{5dk+3d}=\frac{b\cdot\left(5k+3\right)}{d\cdot\left(5k+3\right)}=\frac{b}{d}\)
\(VP:\frac{2a-3b}{2c-3d}=\frac{2bk-3b}{2dk-3d}=\frac{b\cdot\left(2k-3\right)}{d\cdot\left(2k-3\right)}=\frac{b}{d}\)
Vì \(\frac{b}{d}=\frac{b}{5}\Rightarrow\frac{5a+3b}{5c+3d}=\frac{2a-3b}{2c-3d}\)
Vậy \(\frac{5a+3b}{5c+3d}=\frac{2a-3b}{2c-3d}\left(đpcm\right)\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}=\frac{2a}{2c}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{2a}{2c}=\frac{5a+3b}{5c+3d}=\frac{2a-3b}{2a-3c}\)
Vậy \(\frac{5a+3b}{5c+3d}=\frac{2a-3b}{2a-3c}\left(đpcm\right)\)
Ta có:
\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a) \(\frac{5a+3b}{5c+3d}=\frac{5.bk+3b}{5.dk+3d}=\frac{b\left(5k+3\right)}{d\left(5k+3\right)}=\frac{b}{d}\)
\(\frac{5a-3b}{5c-3d}=\frac{5.bk-3b}{5.dk-3d}=\frac{b\left(5k-3\right)}{d\left(5k-3\right)}=\frac{b}{d}\)
\(\Rightarrow\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\left(đpcm\right)\)
b) \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)
\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)
1/ Ta có \(\frac{a}{2}=\frac{b}{3}\rightarrow\frac{a}{10}=\frac{b}{15}\) (1)
\(\frac{b}{5}=\frac{c}{4}\rightarrow\frac{b}{15}=\frac{c}{12}\)(2)
Từ (1) và (2) suy ra \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng t/c dãy TSBN
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{49}{7}=7\)
\(\Leftrightarrow\frac{a}{10}=7\rightarrow a=70\)
Tương tự với b và c
Vậy......
a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{2a}{2c}=\dfrac{3b}{3d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{2a}{2c}=\dfrac{3b}{3d}=\dfrac{2a-3b}{2c-3d}=\dfrac{2a+3b}{2c+3d}\) ( đpcm )
b) Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\) ( đpcm ).
Theo đề bài ta có:
a/b=c/d=a/c=b/d
Áp dụng tính chất dãy tỉ số bằng nhau:
a/c=b/d=2a/2c=3b/3d=2a+3b/2c+3d
=2a-3b/2c-3d
=>2a+3b/2c+3d=2a-3b/2c-3d=2a+3b/2a-3b=2c+3d/2c-3d (đpcm)
b) Theo đề bài ta có:
a/b=c/d=ab/b^2=cd/d^2=ab/cd=b^2/d^2 (*)
Áp dụng tính chất dãy tỉ số bằng nhau :
a/b=c/d=a/c=b/d=a^2/c^2/b^2/d^2=a^2-b^2/c^2-d^2(**)
Từ (*) và(**) suy ra ab/cd=a^2-b^2/c^2-d^2 (đpcm)
(có thể trình bày theo cách khác)