Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
1+2+3+.........+x=5050
=>\(\frac{x.\left(x+1\right)}{2}=5050\)
=>x.(x+1)=5050.2
=>x.(x+1)=10100
=>x.(x+1)=100.101
=>x=100
a; 1 + 2 + 3 + ... + \(x\) = 5050
Số số hạng của dãy số trên là: (\(x-1\)):1 + 1 = \(x\)
(\(x\) + 1)\(\times\) \(x\): 2 = 5050
(\(x\) + 1) \(\times\) \(x\) = 5050 \(\times\) 2
(\(x+1\)) \(\times\) \(x\) = 10100
(\(x+1\)) \(\times\) \(x\) = 101 \(\times\) 100
Vậy \(x=100\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x}=\frac{99}{100}\)
Đặt \(x=n.\left(n+1\right)\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}=\frac{99}{100}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{n+1-n}{n.\left(n+1\right)}=\frac{99}{100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{\left(n+1\right)}=\frac{99}{100}\)
\(=1-\frac{1}{\left(n+1\right)}=\frac{99}{100}\)
\(\frac{1}{\left(n+1\right)}=1-\frac{99}{100}=\frac{1}{100}\)
\(\Rightarrow x=\left(100-1\right).100\)
\(=9900\)
Ta có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+......+\frac{1}{x}=\frac{99}{100}\)
\(\Leftrightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{x}=\frac{99}{100}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{x}=\frac{99}{100}\)
Đề kì z
1/1x2+1/2x3+1/3x4+...+1/x=99?100
1/1-1/2+1/2-1/3+1/3-1/4+...+1/x=99/100
1/1-1/x=99/100
1/x=1/1-99/100
1/x=1/100
=>x=100
kbn nha
Giải:
1/2 + 1/6 + 1/12 + ... + 1/x.(x+1) = 99/100
=>1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x.(x+1) = 99/100
1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/x - 1/x+1 = 99/100
1/1 - 1/x+1 = 99/100
1/x+1 = 1/1 - 99/100
1/x+1 = 1/100
=>x+1 = 100
x = 100 - 1
x = 99
Vậy ...
Chúc bạn học tốt!
`1/2+1/6+1/12+....+1/(x(x+1))=99/100`
`-> 1/(1.2)+1/(2.3)+1/(3.4)+....+1/(x(x+1))=99/100`
`-> 1 - 1/2 + 1/2 -1/3 +1/3-1/4+....+1/x -1/(x+1)=99/100`
`-> 1-1/(x+1)=99/100`
`-> x/(x+1)=99/(99+1)`
`-> x=99`
Bài 1:
ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
Ta có: \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{99}{100}\)
\(\Leftrightarrow\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{99}{100}\)
\(\Leftrightarrow\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{99}{100}\)
\(\Leftrightarrow\dfrac{1}{1}-\dfrac{1}{x+1}=\dfrac{99}{100}\)
\(\Leftrightarrow\dfrac{x+1-1}{x+1}=\dfrac{99}{100}\)
\(\Leftrightarrow100x=99\left(x+1\right)\)
\(\Leftrightarrow100x-99x=99\)
hay x=99(thỏa ĐK)
Vậy: x=99
a) Số số hạng: \(\frac{\left(99-1\right)}{1}+1=99\)
Tổng: \(\frac{99+1}{2}\cdot99=4950\)
b) Số số hạng: \(\frac{\left(100-2\right)}{2}+1=50\)
Tổng: \(\frac{100+2}{2}\cdot50=2550\)
c) \(S=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(3\cdot S=1\cdot2\left(3-0\right)+2\cdot3\left(4-1\right)+3\cdot4\left(5-2\right)+...+99\cdot100\left(101-98\right)\)
\(3\cdot S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+99\cdot100\cdot101-98\cdot99\cdot100\)
\(3\cdot S=99\cdot100\cdot101\)
Vậy, \(S=\frac{1}{3}\cdot99\cdot100\cdot101=333300\)
\(\Leftrightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x.\left(x+1\right)}\)=\(\dfrac{99}{100}\)
\(\Leftrightarrow\)\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)=\(\dfrac{99}{100}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}\)=\(\dfrac{99}{100}\)
\(\Leftrightarrow\dfrac{1}{x+1}\)=\(\dfrac{1}{100}\)
\(\Leftrightarrow x+1\)=100
\(\Leftrightarrow\)\(x\)=99