Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{5+2\sqrt{5}}{\sqrt{5}+\sqrt{2}}=\dfrac{\left(5+2\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)}{3}=\dfrac{5\sqrt{5}-5\sqrt{2}+10-2\sqrt{10}}{3}\)
b: \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)
\(\dfrac{1}{1-\sqrt{5}}+\dfrac{1}{\sqrt{5}-1}=\dfrac{-1+1}{\sqrt{5}-1}=\dfrac{0}{\sqrt{5}-1}=0\)
\(\dfrac{1}{1-\sqrt{5}}+\dfrac{1}{\sqrt{5}-1}=\dfrac{1}{1-\sqrt{5}}-\dfrac{1}{1-\sqrt{5}}=0\)
a) \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{2}\right|+\left|\sqrt{5}+\sqrt{2}\right|\)
\(=\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}\)
\(=\sqrt{5}+\sqrt{5}\)
\(=2\sqrt{5}\)
b) \(\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(\sqrt{2}-5\right)^2}\)
\(=\left|\sqrt{2}-1\right|-\left|\sqrt{2}-5\right|\)
\(=\sqrt{2}-1-\left(5-\sqrt{2}\right)\)
\(=\sqrt{2}-1-5+\sqrt{2}\)
\(=2\sqrt{2}-6\)
\(\left(3+\frac{\sqrt{5}}{\sqrt{10}}+\sqrt{3}+\sqrt{5}\right)-\left(3-\frac{\sqrt{5}}{\sqrt{10}}+\sqrt{3}-\sqrt{5}\right)=\sqrt{34.64911064}\)
Cho hàm số y=(1-√5)x-1
a, Hàm số đồng biến hay nghịch biến trên R?vì sao
Hàm số nghịch biến vi (1-√5<0
b,Tính y khi x=1+√5
y=(1-√5)(1+√5)-1
y = -5
\(=\left(1-\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}+1\right)\)
=(1-căn 5)(1+căn 5)
=1-5
=-4
\(\left(1+\dfrac{5-\sqrt{5}}{1-\sqrt{5}}\right)\left(\dfrac{5+\sqrt{5}}{1+\sqrt{5}}+1\right)\)
\(=\left(1-\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}+1\right)\)
\(=\left(1-\sqrt{5}\right)\left(\sqrt{5}+1\right)\)
\(=1^2-\left(\sqrt{5}\right)^2\)
\(=1-5\)
\(=-4\)