Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1)-4x\left(x-5\right)-2x\left(8-2x\right)=-3\)
\(\Rightarrow-4x^2-\left(-20x\right)-16x+4x^2=-3\)
\(\Rightarrow20x-14x=-3\)
\(\Rightarrow6x=-3\)
\(\Rightarrow x=-\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\)
\(2)\) Theo bài ra, ta có: \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\) và \(x^2+y^2+z^2=14\)
\(\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)
\(\Rightarrow\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\)
\(\Rightarrow\sqrt[3]{\left(\dfrac{x}{2}\right)^3}=\sqrt[3]{\left(\dfrac{y}{4}\right)^3}=\sqrt[3]{\left(\dfrac{z}{6}\right)^3}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)
\(\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{4}\right)^2=\left(\dfrac{z}{6}\right)^2\)
\(\Rightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
Suy ra:
\(+)\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}.4=1=\left(\pm1\right)^2\Rightarrow x=\pm1\)
\(+)\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{16}.4=\dfrac{1}{4}=\left(\pm\dfrac{1}{2}\right)^2\Rightarrow y=\pm\dfrac{1}{2}\)
\(+)\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{36}.4=\dfrac{1}{9}=\left(\pm\dfrac{1}{3}\right)^2\Rightarrow z=\pm\dfrac{1}{3}\)
Vậy \(\left(x;y;z\right)\in\left\{\left(-1;-\dfrac{1}{2};-\dfrac{1}{3}\right);\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\right\}\)
Ta có: M(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - x4 + 1 - 4x3
M(x) = (2x4 - x4) + (5x3 - x3 - 4x3) + (-x2 + 3x2) + 1
M(x) = x4 + 2x2 + 1
a) M(1) = 14 + 2.12 + 1 = 1 + 2 + 1 = 4
M(-1) = (-1)4 + 2.(-1)2 + 1 = 4
b) Ta có: x4 \(\ge\)0; 2x2 \(\ge\)0; 1 > 0
=> x4 + 2x2 + 1 > 0
=> M(x) > 0
=> M(x) ko có nghiệm
Ta có: \(f\left(-3\right)=a_1.\left(-3\right)^1+a_2.\left(-3\right)^3+a_3.\left(-3\right)^5\)
\(=-a_1.\left(3\right)^1-a_2.\left(3\right)^3-a_3.\left(3\right)^5\)
\(=-\left(a_1.\left(3\right)^1+a_2.\left(3\right)^3+a_3.\left(3\right)^5\right)\)
\(=-f\left(3\right)\)
Vì \(f\left(-3\right)=208\)
=> \(-f\left(3\right)=208\)
=> \(f\left(3\right)=-208\)
b) Tính
\(A=\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}\)
\(=\frac{\left(2^4\right)^3.3^{10}+2^3.3.5.2^9.3^9}{\left(2^2\right)^6.3^{12}+2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}+2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3+1\right)}\)
\(=\frac{2.6}{3.7}=\frac{12}{21}=\frac{4}{7}\)
Vậy : \(A=\frac{4}{7}\)
cho đa thức f(x)=a4x4+a3x3+a2x2+a1x+a0
biết rằng f(1)=f(-1);f(2)=f(-2)
chứng minh f(x)=f(-x) với mọi x
Bài 1:
Đặt \(h_{\left(x\right)}=0\)
\(\Leftrightarrow x^2-5x+5=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{5}{2}=\frac{\sqrt{5}}{2}\\x-\frac{5}{2}=-\frac{\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{5}+5}{2}\\x=\frac{-\sqrt{5}+5}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{5+\sqrt{5}}{2};\frac{5-\sqrt{5}}{2}\right\}\)
Bài 2:
a) Đặt \(f_{\left(x\right)}=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Vậy: S={2}
b) Đặt \(g_{\left(x\right)}=0\)
\(\Leftrightarrow x^3-4x=0\)
\(\Leftrightarrow x\left(x^2-4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy: S={0;2;-2}
c) Đặt \(h_{\left(x\right)}=0\)
\(\Leftrightarrow x^3+8=0\)
\(\Leftrightarrow x^3=-8\)
hay x=-2
Vậy: S={-2}
d) Đặt \(p_{\left(x\right)}=0\)
\(\Leftrightarrow x^3+x^2+x+1=0\)
\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x+1=0\)(vì \(x^2+1>0\forall x\))
hay x=-1
Vậy: S={-1}
a) A(x) = -4x5 - x3 + 4x2 + 5x + 9 + 4x5 - 6x2 - 2
= - x3 - 2x2 + 5x + 7
B(x) = -3x4 - 2x3 + 10x2 - 8x + 5x3 - 7 - 2x3 + 8x
= - 3x4 + x3 + 10x2 - 7
b) P(x) = A(x) + B(x)
= - x3 - 2x2 + 5x + 7 - 3x4 + x3 + 10x2 - 7
= - 3x4 + 8x2 + 5x
Q(x) = A(x) - B(x)
= - x3 - 2x2 + 5x + 7 - (- 3x4 + x3 + 10x2 - 7)
= - x3 - 2x2 + 5x + 7 + 3x4 - x3 - 10x2 + 7
= 3x4 - 2x3 - 12x2 + 5x + 14
c) Thế x = -1 vào đa thức P(x), ta có:
P(-1) = - 3.(-1)4 + 8.(-1)2 + 5.(-1) = -3 + 8 + (-5) = 0
Vậy x = -1 là nghiệm của đa thức P(x).
\(3^{x+1}-3^x=54\Leftrightarrow3^x\left(3-1\right)=54\Leftrightarrow3^x=27\Leftrightarrow3^x=3^3\Rightarrow x=3\)
3x+1 = 54 + 3x
<=> 3x+1 - 3x = 54
<=> 3x . 2 = 54
<=> 3x = 27
=> 3x = 33 => x = 3