Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{9^{1006}-1}{4}\) là số chẵn nên x là số lẻ
\(\Rightarrow\left(-3\right)^x=-3^x\)
Đặt A=1-3+32-33+...-3x
3A=3-32+33-34+...+3x+1
3A+A=[3-32+33-34+...+3x+1] -[1-3+32-33+...-3x]
4A=3x+1-1
\(A=\frac{3^{x+1}-1}{4}=\frac{9^{1006}-1}{4}=\frac{\left(3^2\right)^{1006}-1}{4}=\frac{3^{1012}-1}{4}\)
=>x+1=2012
=>x=2012-1=2011
vậy x=2011
\(a.\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x-1\right).\left(2x+1\right)}=\frac{49}{99}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x-1\right).\left(2x+1\right)}\right)=\frac{49}{99}\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x-1}-\frac{1}{2x+1}\right)=\frac{49}{99}\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{2x+1}\right)=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2x+1}=\frac{49}{99}\)
\(\Rightarrow99x=49.\left(2x+1\right)\)
\(\Rightarrow99x=98x+49\)
\(\Rightarrow x=49\)
Vậy : \(x=49\)
\(b.\)
\(1-3+3^2-3^3+...+\left(-3^x\right)=\frac{1-9^{1006}}{4}\)
Đặt \(A=1-3+3^2-3^3+...+\left(-3^x\right)\)
\(\Rightarrow3A=3-3^2+3^3-3^4+...+\left(-3^{x+1}\right)\)
\(\Rightarrow3A+A=1+\left(-3^{x+1}\right)\)
\(\Rightarrow4A=1+\left(-3^{x+1}\right)\)
\(\Rightarrow A=\frac{1+\left(-3^{x+1}\right)}{4}\)
\(\Rightarrow\frac{1+\left(-3^{x+1}\right)}{4}=\frac{1-9^{1006}}{4}\)
\(\Rightarrow-3^{x+1}=-9^{1006}\)
\(\Rightarrow-3^{x+1}=-3^{2012}\)
\(\Rightarrow x+1=2012\)
\(\Rightarrow x=2012-1\)
\(\Rightarrow x=2011\)
Vậy : \(x=2011\)
\(\left(3x+1\right)^2=25\)
\(\Rightarrow\left(3x+1\right)^2=5^2=\left(-5\right)^2\)
\(\Rightarrow\orbr{\begin{cases}3x+1=5\\3x+1=-5\end{cases}\Rightarrow\orbr{\begin{cases}3x=5-1=4\\3x=-5-1=-6\end{cases}}}\Rightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-2\end{cases}}\)
\(\left[x-\frac{1}{2}\right]+\frac{1}{2}=\frac{5}{8}\)
\(\Rightarrow x-0=\frac{5}{8}\)
\(x=\frac{5}{8}\)
\(\left[x+\frac{3}{4}\right]-\frac{1}{3}=0\)
\(x+\frac{3}{4}=0+\frac{1}{3}=\frac{1}{3}\)
\(x=\frac{1}{3}-\frac{3}{4}\)
\(x=\frac{-5}{12}\)
a) \(2x\left(x-\frac{1}{7}\right)=0\)
⇒\(\left[{}\begin{matrix}2x=0\\x-\frac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{7}\end{matrix}\right.\)
Vậy \(x=0;x=\frac{1}{7}\)
b) \(\frac{1}{2}x+\frac{3}{5}x=\frac{-33}{25}\\ \left(\frac{1}{2}+\frac{3}{5}\right)x=\frac{-33}{25}\\ \left(\frac{5}{10}+\frac{6}{10}\right)x=\frac{-33}{25}\\ \frac{11}{10}x=\frac{-33}{25}\\ x=\frac{-33}{25}:\frac{11}{10}\\ x=\frac{-33.10}{25.11}\\ x=\frac{-6}{5}\)
Vậy x = \(\frac{-6}{5}\)
c) \(\left(\frac{2}{3}x-\frac{4}{9}\right)\left(\frac{1}{2}+\frac{-3}{7}:x\right)=0\\ \Rightarrow\left[{}\begin{matrix}\frac{2}{3}x-\frac{4}{9}=0\\\frac{1}{2}+\frac{-3}{7}:x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{2}{3}x=\frac{4}{9}\\\frac{-3}{7}:x=\frac{-1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{4}{9}:\frac{2}{3}=\frac{4.3}{9.2}=\frac{2}{3}\\x=\frac{-3}{7}:\frac{-1}{2}=\frac{-3.2}{7.\left(-1\right)}=\frac{6}{7}\end{matrix}\right.\)
a) \(2x\left(x-\frac{1}{7}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-\frac{1}{7}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0:2=0\\x=0+\frac{1}{7}=\frac{1}{7}\end{matrix}\right.\)
b) \(\frac{1}{2}x+\frac{3}{5}x=-\frac{33}{25}\)
\(\Rightarrow x\left(\frac{1}{2}+\frac{3}{5}\right)=-\frac{33}{25}\)
\(\Rightarrow x\frac{11}{10}=-\frac{33}{25}\)
\(\Rightarrow x=\left(-\frac{33}{25}\right):\frac{11}{10}=-\frac{33}{25}.\frac{10}{11}=-\frac{6}{5}\)
c) \(\left(\frac{2}{3}x-\frac{4}{9}\right)\left(\frac{1}{2}+\frac{-3}{7}:x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2}{3}x-\frac{4}{9}=0\\\frac{1}{2}+\frac{-3}{7}:x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2}{3}x=0+\frac{4}{9}=\frac{4}{9}\\-\frac{3}{7}:x=0-\frac{1}{2}=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{4}{9}:\frac{2}{3}=\frac{4}{9}.\frac{3}{2}=\frac{2}{3}\\x=\left(-\frac{3}{7}\right):\frac{-1}{2}=\left(-\frac{3}{7}\right).\left(-2\right)=\frac{6}{7}\end{matrix}\right.\)