K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\dfrac{-5}{18}+\dfrac{32}{45}-\dfrac{9}{10}\)

\(=\dfrac{-25}{90}+\dfrac{64}{90}-\dfrac{81}{90}\)

\(=\dfrac{-42}{90}=-\dfrac{7}{15}\)

b) Ta có: \(\left(-\dfrac{1}{4}+\dfrac{51}{33}-\dfrac{5}{3}\right)-\left(-\dfrac{15}{12}+\dfrac{6}{11}-\dfrac{42}{29}\right)\)

\(=\dfrac{-1}{4}+\dfrac{17}{11}-\dfrac{5}{3}+\dfrac{5}{4}-\dfrac{6}{11}+\dfrac{42}{29}\)

\(=\dfrac{-5}{3}+\dfrac{42}{29}\)

\(=\dfrac{-145}{87}+\dfrac{126}{87}=\dfrac{-19}{87}\)

c) Ta có: \(1-\dfrac{1}{2}+2-\dfrac{2}{3}+3-\dfrac{3}{4}+4-\dfrac{1}{4}-3-\dfrac{1}{3}-2-\dfrac{1}{2}-1\)

\(=\left(1-1\right)-\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(2-2\right)-\left(\dfrac{2}{3}+\dfrac{1}{3}\right)+\left(3-3\right)-\left(\dfrac{3}{4}+\dfrac{1}{4}\right)+4\)

\(=-1-1-1+4\)

=1

18 tháng 7 2021

a) Ta có: −518+3245−910−518+3245−910

=−2590+6490−8190=−2590+6490−8190

=−4290=−715=−4290=−715

b) Ta có: (−14+5133−53)−(−1512+611−4229)(−14+5133−53)−(−1512+611−4229)

=−14+1711−53+54−611+4229=−14+1711−53+54−611+4229

=−53+4229=−53+4229

=−14587+12687=−1987=−14587+12687=−1987

c) Ta có: 1−12+2−23+3−34+4−14−3−13−2−12−11−12+2−23+3−34+4−14−3−13−2−12−1

=(1−1)−(12+12)+(2−2)−(23+13)+(3−3)−(34+14)+4=(1−1)−(12+12)+(2−2)−(23+13)+(3−3)−(34+14)+4

=−1−1−1+4=−1−1−1+4

=1

19 tháng 5 2021

\(S=\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}\right)\)

ta có: \(\left\{{}\begin{matrix}\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}< \dfrac{1}{30}+\dfrac{1}{30}+...+\dfrac{1}{30}=\dfrac{1}{3}\\\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}< \dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{1}{4}\\\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{1}{5}\end{matrix}\right.\)

\(\Rightarrow S< \dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{47}{60}< \dfrac{48}{60}=\dfrac{4}{5}\Leftrightarrow5S< 4^{\left(1\right)}\)

Lại có: \(\left\{{}\begin{matrix}\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}>\dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{1}{4}\\\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}>\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{1}{5}\\\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}=\dfrac{1}{6}\end{matrix}\right.\)

\(\Rightarrow S>\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}=\dfrac{37}{60}>\dfrac{36}{60}=\dfrac{3}{5}\Leftrightarrow5S>3^{\left(2\right)}\)

từ (1) và (2) => 3<5S<4

Bài 10:

a: Để A là phân số thì n+2<>0

hay n<>-2

b: Khi n=0 thì A=3/2

Khi n=2 thì A=3/(2+2)=3/4

Khi n=-7 thì A=3/(-7+2)=-3/5

6 tháng 3 2022

Bài 9:

1)9/x = -35/105               2) 12/5 = 32/x                   3)x/2 = 32/x                            x = 9. (-35)/105              x.12/5 = x.32/x                    2x.x/2 = 2x.32/x        

        x = -3                              x.12/5=32                         xx = 2.32

                                                        x= 32:12/5                x^2 = 2.32

                                                         x = 40/3                   x^2 = 64

                                                                                         x = 8

4) x-2/4 = x-1/5

      5(x-2) = 4(x-1)
       5x - 10 = 4x - 4
        5x - 4x = 10 - 4
         x = 6   

  Bài 10:Cho biểu thức A=3/n+2

a) Để A là phân số thì mẫu số phải khác 0

      Do đó: n + 2 ≉ 0. Suy ra: n ≉ -2

b) Khi n = 0 thì A = 3/0+2 = 3/2

     Khi n = 2 thì A = 3/2+2 = 3/4

     Khi n = -7 thì A = 3/-7+2 = 3/-5 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

                                          

                                           

25 tháng 3 2023

a, \(x\cdot\dfrac{-5}{8}=\dfrac{15}{32}\)

\(x=\dfrac{15}{32}:\dfrac{-5}{8}\)

\(x=\dfrac{-3}{4}\)

 

b, \(\dfrac{3}{10}:x=\dfrac{-9}{20}\)

\(x=\dfrac{3}{10}:\dfrac{-9}{20}\)

\(x=-\dfrac{2}{3}\)

 

c, \(\dfrac{-1}{4}x+\dfrac{4}{5}=\dfrac{3}{4}\)

\(\dfrac{-1}{4}x=\dfrac{3}{4}-\dfrac{4}{5}\)

\(\dfrac{-1}{4}x=-\dfrac{1}{20}\)

\(x=-\dfrac{1}{20}:\dfrac{-1}{4}\)

\(x=\dfrac{1}{5}\)

 

d, \(\dfrac{-7}{8}+\dfrac{2}{3}:x=\dfrac{3}{5}\cdot\dfrac{-5}{12}\)

\(\dfrac{-7}{8}+\dfrac{2}{3}:x=-\dfrac{1}{4}\)

\(\dfrac{2}{3}:x=-\dfrac{1}{4}+\dfrac{-7}{8}\)

\(\dfrac{2}{3}:x=\dfrac{5}{8}\)

\(x=\dfrac{2}{3}:\dfrac{5}{8}\)

\(x=\dfrac{16}{15}\)

 

 

 

#YVA6

25 tháng 3 2023

\(a,x.\dfrac{-5}{8}=\dfrac{15}{32}\)

\(\Leftrightarrow x=\dfrac{15}{32}:\dfrac{-5}{8}\)

\(\Leftrightarrow x=\dfrac{15}{32}.\dfrac{-8}{5}\)

\(\Leftrightarrow x=-\dfrac{3}{4}\)

\(b,\dfrac{3}{10}:x=-\dfrac{9}{20}\)

\(\Leftrightarrow x=\dfrac{3}{10}:\dfrac{-9}{20}\)

\(\Leftrightarrow x=\dfrac{3}{10}.\dfrac{-20}{9}\)

\(\Leftrightarrow x=-\dfrac{2}{3}\)

\(c,-\dfrac{1}{4}x+\dfrac{4}{5}=\dfrac{3}{4}\)

\(\Leftrightarrow-\dfrac{1}{4}x=\dfrac{3}{4}-\dfrac{4}{5}\)

\(\Leftrightarrow-\dfrac{1}{4}x=-\dfrac{1}{20}\)

\(\Leftrightarrow x=-\dfrac{1}{20}\times\left(-4\right)\)

\(\Leftrightarrow x=\dfrac{1}{5}\)

\(d,-\dfrac{7}{8}+\dfrac{2}{3}:x=\dfrac{3}{5}.\dfrac{-5}{12}\)

\(\Leftrightarrow-\dfrac{7}{8}+\dfrac{2}{3}:x=-\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{2}{3}:x=-\dfrac{1}{4}+\dfrac{7}{8}\)

\(\Leftrightarrow\dfrac{2}{3}:x=\dfrac{5}{8}\)

\(\Leftrightarrow x=\dfrac{2}{3}:\dfrac{5}{8}\)

\(\Leftrightarrow x=\dfrac{16}{15}\)

6 tháng 8 2016

3/2+5/4+9/8/+17/16+33/32-6+x-1/x+1=31/32-2/2015

=(1+1/2)+(1+1/4)+(1+1/8)+(1+1/16)+(1+1/32-6+x-1/x+1=31/32-2/2015

=(1/2+1/4+1/8+1/16+1/32)+(1+1+1+1+1)-6+x-1/x+1=31/32-2/2015

=31/32+5-6+x-1/x+1=31/32-2/2015

=5-6+x-1/x+1=31/32-2/2015-31/32

=-1+x-1/x+1=-2/2015

=x-1/x+1=-2/2015- -1

=x-1/x+1=2013/2015

=>x=2014

27 tháng 3 2018

đơn giản quá!

27 tháng 3 2018

Bạn có bt làm bài 5 ko?

25 tháng 3 2017

Giải:

Đặt \(A=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{59}+\dfrac{1}{60}\)

Ta có:

\(A=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{59}+\dfrac{1}{60}\)

\(\Rightarrow A=\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}\right)\)

Nhận xét:

\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}< \dfrac{1}{30}+\dfrac{1}{30}+...+\dfrac{1}{30}=\dfrac{1}{3}\)

\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}< \dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{1}{4}\)

\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{1}{5}\)

\(\Rightarrow A< \dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{47}{60}< \dfrac{48}{60}=\dfrac{4}{5}\)

\(\Rightarrow A< \dfrac{4}{5}\left(1\right)\)

Lại có:

\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}>\dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{1}{4}\)

\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}>\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{1}{5}\)

\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}=\dfrac{1}{6}\)

\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}=\dfrac{37}{60}>\dfrac{36}{60}=\dfrac{3}{5}\)

\(\Rightarrow A>\dfrac{3}{5}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow\dfrac{3}{5}< A< \dfrac{4}{5}\)

Vậy \(\dfrac{3}{5}< \dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{59}+\dfrac{1}{60}< \dfrac{4}{5}\) (Đpcm)

22 tháng 4 2018

Đặt A=131+132+133+...+159+160A=131+132+133+...+159+160

Ta có:

A=131+132+133+...+159+160A=131+132+133+...+159+160

⇒A=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)⇒A=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)

Nhận xét:

131+132+...+140<130+130+...+130=13131+132+...+140<130+130+...+130=13

141+142+...+150<140+140+...+140=14141+142+...+150<140+140+...+140=14

151+152+...+160<150+150+...+150=15151+152+...+160<150+150+...+150=15

⇒A<13+14+15=4760<4860=45⇒A<13+14+15=4760<4860=45

⇒A<45(1)⇒A<45(1)

Lại có:

131+132+...+140>140+140+...+140=14131+132+...+140>140+140+...+140=14

141+142+...+150>150+150+...+150=15141+142+...+150>150+150+...+150=15

151+152+...+160>160+160+...+160=16151+152+...+160>160+160+...+160=16

⇒A>14+15+16=3760>3660=35⇒A>14+15+16=3760>3660=35

⇒A>35(2)⇒A>35(2)

Từ (1)(1)(2)(2)

⇒35<A<45⇒35<A<45

Vậy 35<131+132+133+...+159+160<4535<131+132+133+...+159+160<45