K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
4 tháng 4 2016
M=1+3+32+33+34+...+398+399+3100
M=(1+3+32)+(33+34+35)+...+(398+399+3100)
M=(1+3+32)+33(1+3+32)+...+398(1+3+32)
M=13+33.13+...+398.13
M=13(1+33+...+398) chia hết cho 13
=> M chia cho 13 dư 0
Vậy M chia cho 13 dư 0
SN
22 tháng 10 2021
S=1-3+3\(^2\)-....+3\(^{98}\)-3\(^{99}\)(1)
\(\Rightarrow\)3S=3-3\(^2\)+3\(^3\)+...+3\(^{99}\)-3\(^{100}\)(2)
Từ(1)và(2)\(\Rightarrow\)4S=1-3\(^{100}\)
Do S chia hết cho -20\(\Rightarrow\)4S chia hết cho -20
\(\Rightarrow\)4S chia hết cho 4\(\Rightarrow\)1-3\(^{100}\)chia hết cho 4
\(\Rightarrow\)3\(^{100}\)chia hết 4 dư 1
BT
3
KZ
24 tháng 12 2020
M= 1+3+3^2+3^3+...+3^98+3^99+3^100
M= (1+3+3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)
M= (1+3+3^2)+3^3(1+3+3^2)+...+3^98(1+3+3^2)
M= 13+3^3.13+...+3^98.13
M=13.(3^3+...+3^98) chia hết cho 13
=> M chia cho 13 dư 0
LK
1
25 tháng 7 2018
\(1+2+3+...+98+99+100\)
\(=\frac{\left(100+1\right)\left[\left(100-1\right):1+1\right]}{2}\)
\(=\frac{101.100}{2}=5050\)
Mà 5050 chia 9 dư 1
gọi tích là s ta có
S = 1- 3 + 3^2 - 3^3 + 3^4 - ... + 3^98 - 3^99
3S=3-3^2+3^3-3^4+......3^99-3^100
==> 3S-S=2S=1-3^100
S=\(\frac{1-3\text{^}100}{2}\)