K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(1-2x\right)^4=\dfrac{1}{128}\)

\(\Leftrightarrow1-2x=\dfrac{\sqrt[4]{2}}{4}\)

\(\Leftrightarrow2x=\dfrac{1-\sqrt[4]{2}}{4}\)

hay \(x=\dfrac{1-\sqrt[4]{2}}{8}\)

27 tháng 9 2021

giải theo cách toán 7 được ko ạ

\(\left(1-2x\right)^4=\dfrac{1}{128}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=\dfrac{\sqrt[4]{2}}{4}\\2x-1=\dfrac{-\sqrt[4]{2}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt[4]{2}+1}{8}\\x=\dfrac{-\sqrt[4]{2}+1}{8}\end{matrix}\right.\)

26 tháng 8 2023

a) \(\dfrac{1}{4}+\dfrac{3}{4}:x=-2\)

\(\dfrac{3}{4}:x=-2-\dfrac{1}{4}=\dfrac{-8}{4}-\dfrac{1}{4}\)

\(\dfrac{3}{4}:x=\dfrac{-9}{4}\)

\(x=\dfrac{3}{4}:\dfrac{-9}{4}=\dfrac{3}{4}.\dfrac{-4}{9}\)

\(x=\dfrac{-1}{3}\)

b) \(\dfrac{3}{4}+2.\left(2x-\dfrac{2}{3}\right)=-2\)

\(2.\left(2x-\dfrac{2}{3}\right)=-2-\dfrac{3}{4}=\dfrac{-8}{4}-\dfrac{3}{4}\)

\(2.\left(2x-\dfrac{2}{3}\right)=\dfrac{-11}{4}\)

\(2x-\dfrac{2}{3}=\dfrac{-11}{4}:2=\dfrac{-11}{4}.\dfrac{1}{2}\)

\(2x-\dfrac{2}{3}=\dfrac{-11}{8}\)

\(2x=\dfrac{-11}{8}+\dfrac{2}{3}=\dfrac{-33}{24}+\dfrac{16}{24}\)

\(2x=\dfrac{-17}{24}\)

\(x=\dfrac{-17}{24}:2=\dfrac{-17}{24}.\dfrac{1}{2}\)

\(x=\dfrac{-17}{48}\)

c) \(\left(\dfrac{1}{2}+5x\right).\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}+5x=0\\2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{-1}{2}\\2x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{10}\\x=\dfrac{3}{2}\end{matrix}\right.\)

26 tháng 8 2023

a, 1/4 + 3/4 : x = -2

     3/4 : x = -2 - 1/4 

     3/4 : x = -9/4

             x = 3/4 : -9/4

             x = -1/3

#\(N\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+1}{3}=\dfrac{y-2}{4}=\dfrac{z-1}{13}=\dfrac{2x+2-3.\left(y-2\right)+z-1}{3\cdot2-3.4+13}=\dfrac{2x+2-3y+6+z-1}{7}\)

\(=\dfrac{\left(2x-3y+z\right)+7}{7}=\dfrac{42+7}{7}=\dfrac{49}{7}=7\)

`->`\(\dfrac{x+1}{3}=7,\dfrac{y-2}{4}=7,\dfrac{z-1}{13}=7\) 

`->` \(x=20,y=30,z=92\)

 

4 tháng 2 2023

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

x+13=y−24=z−113=2x+2−3.(y−2)+z−13⋅2−3.4+13=2x+2−3y+6+z−17x+13=y−24=z−113=2x+2−3.(y−2)+z−13⋅2−3.4+13=2x+2−3y+6+z−17

=(2x−3y+z)+77=42+77=497=7=(2x−3y+z)+77=42+77=497=7

x+13=7,y−24=7,z−113=7x+13=7,y−24=7,z−113=7 

 x=20,y=30,z=92

26 tháng 7 2016

1a) Để \(\frac{6x+5}{2x+1}\)là số nguyên thì 6x+5 chia hết cho 2x+1

=> (6x+3)+2 chia hết cho 2x+1

=> 2 chia hết cho 2x+1 ( vì 6x+3 chia hết cho 2x+1)

=> 2x+1 thuộc ước của 2={ 1;-1;2;-2}

Với 2x+1=1=> x=0

Với 2x+1=-1=> x=-1

Với 2x+1=...........

Với 2x+1=.......

Vậy x=.............

b) Để \(\frac{3x+9}{x-4}\)là số nguyên thì 3x+9 chia hết cho x-4

=> (3x-12)+21 chia hết x-4

=> 21 chia hết cho x-4 ( vì 3x-12 chia hết cho x-4)

=> x-4 thuộc Ư(12)={1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}

Với x-4=1=> x=5

Với x-4=-1=> x=3

....

....

....

....

...

Vậy x=......

2) \(\left(x+\frac{1}{2}+x+\frac{1}{3}\right)+\left(2x+\frac{1}{3}+2x+\frac{1}{4}\right)=0\)

=> \(6x+\frac{17}{12}=0\)

=> \(x=\frac{0-\frac{17}{12}}{6}=-\frac{89}{12}\)

7 tháng 8 2016

Đúng rồi

13 tháng 8 2021

sửa đề dấu cuối trước số 1 là dấu + thì có nghiệm là 1,-1. còn là dấu - thì không có nghiệm nhé

13 tháng 8 2021

Ta có: x4-2x2+1=0

     ⇔ (x2-1)2=0

     ⇔ (x-1)2(x+1)2=0

    \(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

5 tháng 5 2023

Câu 2:

\(A\left(x\right)=x^2+3x+1\)

\(B\left(x\right)=2x^2-2x-3\)

a) Tính A(x) là sao em?

b) \(A\left(x\right)+B\left(x\right)=\left(x^2+3x+1\right)+\left(2x^2-2x-3\right)\)

\(=x^2+3x+1+2x^2-2x-3\)

\(=\left(x^2+2x^2\right)+\left(3x-2x\right)+\left(1-3\right)\)

\(=3x^2+x-2\)

5 tháng 5 2023

Câu 1:

\(M\left(x\right)=x^3+3x-2x-x^3+2\)

\(=\left(x^3-x^3\right)+\left(3x-2x\right)+2\)

\(=x+2\)

Bậc của M(x) là 1

30 tháng 9 2023

\(2x-3\text{​​}\text{ ⋮ }x-1\)

\(\Rightarrow2\left(x-1\right)-1\text{ ⋮ }x-1\)

\(\text{mà 2(x-1) ⋮ x-1 }\)\(\Rightarrow1\text{ ⋮ }x-1\)

\(\Rightarrow\)\(x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(x-1\) \(1\) \(-1\)
\(x\) \(2\) \(0\)

Vậy \(x\in\left\{0;2\right\}\)

 

 

18 tháng 10 2023

\(\dfrac{1}{2}-3x+\left|x-1\right|=0\\ \Rightarrow3x+\left|x-1\right|=\dfrac{1}{2}-0\\ \Rightarrow3x+\left|x-1\right|=\dfrac{1}{2}\\ \Rightarrow\left|x-1\right|=\dfrac{1}{2}-3x\\ \Rightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{2}-3x\\x-1=-\dfrac{1}{2}+3x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x+3x=\dfrac{1}{2}+1\\x-3x=-\dfrac{1}{2}+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}4x=\dfrac{3}{2}\\2x=\dfrac{1}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{8}\\x=\dfrac{1}{4}\end{matrix}\right.\)

__

\(\dfrac{1}{2}\left|2x-1\right|+\left|2x-1\right|=x+1\\ \Rightarrow\left|2x-1\right|\cdot\left(\dfrac{1}{2}+1\right)=x+1\\ \Rightarrow\left|2x-1\right|\cdot\dfrac{3}{2}=x+1\\ \Rightarrow\left|2x-1\right|=x+1:\dfrac{3}{2}\\ \Rightarrow\left|2x-1\right|=x+\dfrac{2}{3}\\ \Rightarrow\left[{}\begin{matrix}2x-1=x+\dfrac{2}{3}\\2x-1=-x-\dfrac{2}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-x=\dfrac{2}{3}+1\\2x+x=-\dfrac{2}{3}+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\3x=\dfrac{1}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{1}{9}\end{matrix}\right.\)

5 tháng 1 2023

\(TH1:\left|x+1\right|=x+1\\ \Leftrightarrow2x-\left(x+1\right)=-\dfrac{1}{2}\\ \Leftrightarrow2x-x-1=-\dfrac{1}{2}\\ \Leftrightarrow x-1=-\dfrac{1}{2}\\ \Leftrightarrow x=-\dfrac{1}{2}+1\\ \Leftrightarrow x=\dfrac{1}{2}\\ TH2:\left|x+1\right|=-x-1\\ \Leftrightarrow2x-\left(-x-1\right)=-\dfrac{1}{2}\\ \Leftrightarrow2x+x+1=-\dfrac{1}{2}\\ \Leftrightarrow3x=-\dfrac{1}{2}-1\\ \Leftrightarrow3x=-\dfrac{3}{2}\\ \Leftrightarrow x=\left(-\dfrac{3}{2}\right):3=-\dfrac{1}{2}\)

Thay lần lượt \(x=\dfrac{1}{2};x=-\dfrac{1}{2}\) vào pt

\(\Rightarrow x=\dfrac{1}{2}\left(thoaman\right)\)

Vậy \(x=\dfrac{1}{2}\)

5 tháng 1 2023

\(2x-\left|x+1\right|=-\dfrac{1}{2}\)

\(\left|x+1\right|=2x+\dfrac{1}{2}\)

\(\left[{}\begin{matrix}x+1=2x+\dfrac{1}{2}\\x+1=-2x-\dfrac{1}{2}\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\).