K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2018

\(\left(1-\frac{2}{42}\right)\left(1-\frac{2}{56}\right)...\left(1-\frac{2}{2652}\right)\)

\(\frac{40}{42}.\frac{54}{56}.\frac{70}{72}...\frac{2650}{2652}\)

\(\frac{5.8}{6.7}.\frac{6.9}{7.8}.\frac{7.10}{8.9}...\frac{50.53}{51.52}\)

\(\frac{5.6.7...50}{6.7.8...51}.\frac{8.9.10...53}{7.8.9...52}\)

\(\frac{5}{51}.\frac{53}{7}=\frac{265}{357}\)

18 tháng 8 2015

Tính (9,1 + 10,2 + 11,3 + ...+ 17,9) + 19 = (9,1 + 17,9). 9 : 2 + 19 = 121,5 + 19 = 140,5

Tính Mẫu =  \(\frac{40}{42}.\frac{54}{56}.\frac{70}{72}.....\frac{2650}{2652}=\frac{\left(5.8\right).\left(6.9\right).\left(7.10\right)....\left(50.53\right)}{\left(6.7\right).\left(7.8\right).\left(8.9\right)....\left(51.52\right)}=\frac{\left(5.6.7...50\right).\left(8.9.10....53\right)}{\left(6.7.8...51\right).\left(7.8.9...52\right)}=\frac{5.53}{51.7}=\frac{265}{357}\)

Vậy \(P=\frac{140,5}{\frac{265}{357}}.\frac{265}{357}=140,5\)

7 tháng 9 2018

sua de

\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

\(=1-\frac{1}{9}\)

\(=\frac{8}{9}\)

7 tháng 9 2018

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)

\(=1-\frac{1}{9}=\frac{8}{9}\)

27 tháng 4 2019

\(A=\frac{1}{30}+\frac{1}{42}+...+\frac{1}{210}\)

\(A=\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{14.15}\)

\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{14}-\frac{1}{15}\)

\(A=\frac{1}{5}-\frac{1}{15}\)

Tự tính nha :)

27 tháng 4 2019

\(B=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

\(B=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(B=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(B=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(B=2\left(\frac{1}{2}-\frac{1}{100}\right)\)

Tự làm

15 tháng 3 2018

a/ \(A=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)

=> \(A=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)

=> \(A=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)

=> \(A=\frac{1}{3}-\frac{1}{9}=\frac{2}{9}\)

15 tháng 3 2018

b/ \(B=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+\frac{2}{10.13}+\frac{2}{13.16}\)

=> \(B=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\right)\)

=> \(B=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)

=> \(B=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{16}\right)=\frac{2}{3}.\frac{15}{16}=\frac{5}{8}\)

23 tháng 6 2018

1/12+1/6+1/2=(1+2+6)/12=9/12=3/4

1/30+1/20=(3+2)/60=5/6=1/12

1/56+1/42=1/7(1/8+1/6)=1/7(3+4)/24=1/24

8/9-1/72=(8.8-1)/72=63/72=7/8

1/12+1/24=(2+1)/24=3/4

3/4-3/4=0

k cho mik nha!Chúc bn học tốt

6 tháng 11 2021

Ta có 8/9 - 1/72 - 1/56 - 1/42 - 1/30 - 1/20 - 1/12 - 1/6 - 1/2


= 8/9 -(1/72 +1/56 +1/42 + 1/30 + 1/20 + 1/12 + 1/6 + 1/2)


= 8/9 - (1/9.8 + 1/8.7 + ...+ 1/3.2 + 1/2.1)


= 8/9 - (1 - 1/2 + 1/2 - 1/3 +....+ 1/8 - 1/9)


= 8/9 - (1 - 1/9)


= 8/9 - 8/9


= 0

7 tháng 4 2015

Ta có  \(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)

           \(\Rightarrow\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)

                 \(2\left(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2}{9}\)

                 \(2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)

                 \(2\left(\frac{1}{6}-\frac{1}{x+1}\right)=\frac{2}{9}\)

                 \(\frac{1}{6}-\frac{1}{x+1}=\frac{2}{9}\div2\)

                  \(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)

                   \(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)

                     \(\frac{1}{x+1}=\frac{1}{18}\left(1\right)\)

                    \(\left(1\right)\Leftrightarrow\left(x+1\right).1=1.18\) 

                                       \(\Rightarrow x+1=18\)

                                       \(\Rightarrow x=18-1\)

                                       \(\Rightarrow x=17\)

          

27 tháng 1 2023

Ta có A = \(\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)

\(\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}+\dfrac{1}{10\cdot11}+\dfrac{1}{11\cdot12}\)

\(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\)

\(\dfrac{1}{6}-\dfrac{1}{12}=\dfrac{1}{12}\) 

B = \(\dfrac{\dfrac{2}{29}-\dfrac{2}{39}+\dfrac{2}{49}}{\dfrac{23}{29}-\dfrac{23}{39}+\dfrac{23}{49}}=\dfrac{2\left(\dfrac{1}{29}-\dfrac{1}{39}+\dfrac{1}{49}\right)}{23\left(\dfrac{1}{29}-\dfrac{1}{39}+\dfrac{1}{49}\right)}=\dfrac{2}{23}\) 

Lại có \(\dfrac{2}{23}>\dfrac{2}{24}=\dfrac{1}{12}\) hay A < B

Vậy A < B

 

 

28 tháng 1 2023

Cảm ơn bạn nhé!