Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^3.225.45=3^3.25.9.5.9=3^3.5^2.3^2.5.3^2=3^7.5^3\)
\(36.30.125=6^2.5.6.5^3=6^3.5^4\)
\(a.a^5:a^2=a^6:a^2=a^4\)
\(a^8:a^6.a^2=a^2.a^2=a^4\)
\(a^2+a^4:a^2=a^2+a^2=2.a^2\)
Đặt A=1-2+22-23+24-25+....+2100
=>2A=2-22+23-24+25-26+...+2101
=>2A+A=(2-22+23-24+25-26+...+2101)-(1-2+22-23+24-25+...+2100)
=>3A=2-22+23-24+25-26+....+2101-1+2-22+23-24+25-...-2100
=>3A=2101-1
=>A=\(\frac{2^{101}-1}{3}\)
Đặt A = 1-2+22-23+24-25+...+2100
2A = 2-22+23-24+25-26+...+2101
3A = 2A + A = 1+2101
=> A = \(\frac{2^{101}+1}{3}\)
Ta có: \(A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(\Rightarrow A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)
\(\Rightarrow A=2.7+2^4.7+...+2^{98}.7\)
\(\Rightarrow A=\left(2+2^4+...+2^{98}\right).7⋮7\)
\(\Rightarrow A⋮7\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(< 1-\frac{1}{100}< 1\)
=> đpcm
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};\frac{1}{5^2}< \frac{1}{4.5};....;\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{49}{100}< \frac{1}{2}\)
Vậy \(C=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
Có 2 dạng tổng quát
1^3+2^3+..+n^3=n^2.(n+1)/4
1^3+2^3+..+n^3=(1+2+...+n)^2
A = 1 + 22 + 24 + ... + 2100
22A = 22 + 24 + 26 + ... + 2102
4A - A = 22 + 24 + 26 + .. + 2102 - (1 + 22 + 24 + ... + 2100)
4A - A = 22 + 24 + 26 + .. + 2102 - 1 - 22 - 24 - .. - 2100
4A - A = (2102 - 1) + (22 - 22) + (24 - 24) + (26 - 26) + ... + (2100 - 2100)
4A - A = 2102 - 1 + 0 + 0 + 0 + ... + 0
3A - A = 2102 - 1
A = \(\dfrac{2^{102}-1}{3}\)