
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{3}{x}+\frac{4}{3}=\frac{5}{6}\)
\(\frac{3}{x}=\frac{5}{6}-\frac{4}{3}\)
\(\frac{3}{x}=\frac{-1}{2}\)
\(\Rightarrow3.2=\left(-1\right).x\)
\(\Rightarrow6=\left(-1\right).x\)
\(\Rightarrow x=6:\left(-1\right)\)
\(\Rightarrow x=-6\)
\(\frac{x}{2}-\frac{2}{y}=\frac{1}{2}\)
\(\Rightarrow\frac{x}{2}-\frac{1}{2}=\frac{2}{y}\)
\(\Rightarrow\frac{x-1}{2}=\frac{2}{y}\)
\(\Rightarrow\hept{\begin{cases}x-1=2\\2=y\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}\)
\(b,\frac{3}{x}+\frac{4}{3}=\frac{5}{6}\)
\(\Rightarrow\frac{3}{x}=\frac{5}{6}-\frac{4}{3}\)
\(\Rightarrow\frac{3}{x}=\frac{5}{6}-\frac{8}{6}\)
\(\Rightarrow\frac{3}{x}=\frac{-3}{6}\)
\(\Rightarrow x\cdot(-3)=18\Rightarrow x=-6\)

\(-x-\frac{3}{4}=-\frac{8}{11}=>-x=-\frac{8}{11}+\frac{3}{4}=\frac{1}{44}=>x=-\frac{1}{44}\)

a) => 4/3x = 7/9 - 4/9 = 1/3
=> x = 1/3 : 4/3 = 1/4
b) => 5/2 - x = 9/14 : (-4/7) = -9/8
=> x = 5/2 - (-9/8) = 5/2 + 9/8 = 29/8
c) => 3x = 2 và 2/3 - 3/4 = 8/3 - 3/4 = 23/12
=> x = 23/12 : 3 = 23/36
D) => -5/6 - x = 1/4
=> x = -5/6 - 1/4 = -13/12
a) \(\dfrac{4}{9}+\dfrac{4}{3}x=\dfrac{7}{9}\)
\(\dfrac{4}{3}x=\dfrac{7}{9}-\dfrac{4}{9}=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}:\dfrac{4}{3}\)
\(x=\dfrac{1}{4}\)
b) \(\left(\dfrac{5}{2}-x\right)\left(-\dfrac{4}{7}\right)=\dfrac{9}{14}\)
\(\dfrac{5}{2}-x=\dfrac{9}{14}:\left(-\dfrac{4}{7}\right)=-\dfrac{9}{8}\)
\(x=\dfrac{5}{2}-\left(-\dfrac{9}{8}\right)\)
\(x=\dfrac{29}{8}\)
c) \(3x+\dfrac{3}{4}=2\dfrac{2}{3}\)
\(3x+\dfrac{3}{4}=\dfrac{8}{3}\)
\(3x=\dfrac{8}{3}-\dfrac{3}{4}=\dfrac{23}{12}\)
\(x=\dfrac{23}{12}:3\)
\(x=\dfrac{23}{36}\)
d) \(-\dfrac{5}{6}-x=\dfrac{7}{12}+\dfrac{-1}{3}\)
\(-\dfrac{5}{6}-x=\dfrac{1}{4}\)
\(x=-\dfrac{5}{6}-\dfrac{1}{4}\)
\(x=-\dfrac{13}{12}\)

a,\(\frac{1}{x-1}+\frac{-2}{3}.\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)
\(\Rightarrow\frac{1}{x-1}+\frac{-2}{3}.\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x};Đkxđ:x\ne1\)
\(\Rightarrow\frac{1}{x-1}+\frac{-2}{3}\left(\frac{-9}{20}\right)=\frac{5}{2-2x}\)
\(\Rightarrow\frac{1}{x-1}+\frac{3}{10}=\frac{5}{2-2x}\)
\(\Rightarrow\frac{1}{x-1}-\frac{5}{2-2x}=\frac{-3}{10}\)
\(\Rightarrow\frac{1}{x-1}-\frac{5}{-2\left(x-1\right)}=\frac{-3}{10}\)
\(\Rightarrow\frac{1}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{3}{10}\)
\(\Rightarrow\frac{7}{2\left(x-1\right)}=\frac{-3}{10}\)
\(\Rightarrow70=-6\left(x-1\right)\)
\(\Rightarrow6x=6-70\)
\(\Rightarrow6x=-64\)
\(\Rightarrow x=\frac{-32}{3}x\ne1\)

\(\frac{10}{3}x+\frac{67}{4}=-\frac{53}{4}\)
<=> \(\frac{10}{3}x=-30\)
=> x = -9

3200 = 32.100= ( 32)100
2300 = 23.100 = (23)100
Vì 32 > 23 nên (32)100 > ( 23)100 hay 3200> 2300
1) \(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Do 9^100 > 8^100 => 3^200 > 2^300
2) 4x+3 - 3.4x+1= 13.411
4x+1.42 - 3.4x+1= 13.411
4x+1 ( 42 - 3) = 13.411
4x+1 . 13 = 13. 411
4x+1 = 411
=> x + 1 = 11
=> x= 10

a)x-7 = 0
x=0+7=7
b, ( x - 3 ) . ( x^2 + 3 ) = 0
-> x -3=0 hoặc x^2+3 =0
+ Nếu x -3 =0
-> x=3
+ Nếu x^2+3 =0
-> x^2 =-3 ( loại)
Vậy x=3
Bài2
6x + 3 chia hết cho x
Ta có x chia hết cho x
-> 6x chia hết cho x
Mà 6x+3 chia hết cho x
-> (6x+3)-6x chia hết cho x
-> 3 chia hết cho x
......
Bạn tự làm
Câu b tương tự
1.
x - 7 = 0 => x = 7
( x - 3 ) ( x2 + 3 ) = 0
=> \(\orbr{\begin{cases}x-3=0\\x^2+3=0\end{cases}}\)=> \(\orbr{\begin{cases}x=3\\x^2=-3\end{cases}}\)
Bình phương một số \(\ge\)0 => x2 \(\ne\)-3
=> x = 3
2. a) 6x + 3 chia hết cho x
=> 3 chia hết cho x
=> x thuộc Ư(3) = { -3 ; -1 ; 1 ; 3 }
b) 4x + 4 chia hết cho 2x - 1
=> 2(2x - 1) + 6 chia hết cho 2x - 1
=> 4x - 2 + 6 chia hết cho 2x - 1
=> 6 chia hết cho 2x - 1
=> 2x - 1 thuộc Ư(6) = { -6 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 6 }
2x-1 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
x | -2,5 | -1 | -0,5 | 0 | 1 | 1,5 | 2 | 3,5 |
Vì x thuộc Z => x thuộc { -1 ; 0 ; 1 ; 2 }
1+2+3+...+x=210
=>\(\frac{x\left(x+1\right)}{2}=210\)
=>\(x\left(x+1\right)=210\cdot2=420\)
=>\(x^2+x-420=0\)
=>(x+21)(x-20)=0
=>\(\left[\begin{array}{l}x+21=0\\ x-20=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-21\left(loại\right)\\ x=20\left(nhận\right)\end{array}\right.\)
vậy: x=20