Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=1.3+2.4+3.5+4.6+...+99.101+100.102\)
\(A=1.\left(1+2\right)+2.\left(2+2\right)+3.\left(3+2\right)+4.\left(4+2\right)+....+99.\left(99+2\right)+100.\left(100+2\right)\)
\(A=\left(1^2+2^2+3^2+4^2+...+99^2+100^2\right)+\left(2+4+6+8+...+198+200\right)\)Đặt \(B=1^2+2^2+3^2+4^2+5^2+...+99^2+100^2\)
\(\Rightarrow B=\left(1^2+2^2+3^2+4^2+5^2+...+99^2+100^2\right)-2^2.\left(1^2+2^2+3^2+4^2+5^2+....+49^2+50^2\right)\)Tính dãy tổng quát \(C=1^2+2^2+3^2+4^2+5^2+...+n^2\)
\(C=1\left(0+1\right)+2\left(1+1\right)+3.\left(2+1\right)+4.\left(3+1\right)+5\left(4+1\right)+...+n\left[\left(n-1\right)+1\right]\)
\(C=\left[1.2+2.3+3.4+4.5+...+\left(n-1\right).n\right]+\left(1+2+3+4+5+....+n\right)\)
\(C=n.\left(n+1\right).\left[\left(n-1\right):3+1:2\right]=n.\left(n+1\right).\left(2n+1\right):6\)
Áp dụng vào B ta được:
\(B=100.101.201:6-4.50.51.101:6=166650\)
\(\Rightarrow A=166650+\left(200+2\right).100:2\)
\(\Rightarrow A=166650+10100=176750\)
Vậy A = 176750
Chúc bạn học tốt!!
a,
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{x.\left(x+2\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{x+2}\right)\)
\(=\frac{1}{2}\times\frac{x+1}{x+2}\)
\(=\frac{2x+2}{x+2}\)
Hơ hơ =v
Làm đại phần a đúng sai mặc kệ ~~
a,
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{x\left(x+2\right)}\)
\(=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{x\left(x+2\right)}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{x+2}\right)\)
\(=\frac{1}{2}\cdot\frac{x+1}{x+2}\)
\(=\frac{2x+2}{x+2}\)
b,
x = 1.2 + 2.3 + 3.4 + ....+ 89.90
3x = 1.2.3 + 2.3.3 + 3.4.3 + .... + 89.90
3x = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 89.90.(91 - 88)
3x = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 89.90.91 - 88.89.90
3x = 89.90.91
x = \(\frac{89\cdot90\cdot91}{3}=242970\)
a,
ta có công thức \(1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
áp dụng công thưc vào bài ta có \(4^2+5^2+6^2+...+89^2=\frac{89.\left(89+1\right)\left(2.89+1\right)}{6}-1^2-2^2-3^2\)
\(=\frac{89.90.179}{6}-1-4-9\)
\(=\frac{1433790}{6}-1-4-9\)
\(=238965-1-4-9\)
\(=238951\)
b, ta có công thức \(1.2+2.3+3.4+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
áp dụng vào bài ta có \(4.5+5.6+...+89.90=\frac{89.90.91}{3}-\frac{3.4.5}{3}\)
\(=\frac{728910}{3}-\frac{60}{3}\)
\(=242970-20\)
\(=242950\)
`#3107.101107`
\(B=4+4^2+4^3+...+4^{89}+4^{90}\)
\(=\left(4+4^2+4^3\right)+...+\left(4^{88}+4^{89}+4^{90}\right)\)
\(=4\left(1+4+4^2\right)+...+4^{88}\left(1+4+4^2\right)\)
\(=\left(1+4+4^2\right)\left(4+...+4^{88}\right)\)
\(=21\left(4+4^{88}\right)\)
Vì \(21\left(4+4^{88}\right)\) `\vdots 21`
`\Rightarrow B \vdots 21`
Vậy, `B \vdots 21.`
a) 85 . 127 + 5 . 127 . 3
= (85 + 15) . 127
= 100 . 127
= 12700
a) 85 . 127 + 5 . 127 . 3
= (85 + 15) . 127
= 100 . 127
= 12700
b) 1/2 + 5/6 + 11/12 +19/20 + 29/30 + 41/42 + 55/56 + 71/72 + 89/90
1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10
1-1/10
9/10
Ta có công thức : \(1+2+3+...+n=\frac{n.\left(n+1\right)}{2}\)
\(\Rightarrow B=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+10}\)
\(=\frac{1}{\frac{\left(1+2\right).2}{2}}+\frac{1}{\frac{\left(1+3\right).3}{2}}+...+\frac{1}{\frac{\left(1+10\right)10}{2}}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{10.11}\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{11}\right)=2.\frac{9}{22}=\frac{9}{11}\)
Đặt \(A=1.2+2.3+.....+89.90\)
\(3A=1.2.3+2.3.3+..........+89.90.3\)
\(=1.2.3+2.3.\left(4-1\right)+.........+89.90.\left(91-88\right)\)
\(=1.2.3+2.3.4-1.2.3+.........+89.90.91-88.89.90\)
\(=89.90.91\Rightarrow A=89.30.91=242970\)