Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(1\frac{1}{99}\right)\times\left(1\frac{1}{100}\right)\times...\times\left(1\frac{1}{2006}\right)\)
\(=\) \(\frac{100}{99}\times\frac{101}{100}\times...\times\frac{2007}{2006}\)
\(=\) \(\frac{100\times101\times...\times2007}{99\times100\times...\times2006}\)
\(=\) \(\frac{2007}{99}\)
\(=\) \(\frac{223}{11}\)
Đánh máy mệt v~~ Haizzz ...
P/s : Bn cứ lm` theo mk là OK ko cần bàn cãi =))
> Chúc họk tốt <
(1-1/99).(1-1/100)....(1-1/2006) =(99/99-1/99).(100/100-1/100)....(2006/2006-1/2006) = (98/99).(99/100)...(2005/2006) =98/2006=..
\(\left(1-\frac{1}{99}\right)\times\left(1-\frac{1}{100}\right)\times...\times\left(1-\frac{1}{2006}\right)\)
\(=\left(\frac{99}{99}-\frac{1}{99}\right)\times\left(\frac{100}{100}-\frac{1}{100}\right)\times\left(\frac{2006}{2006}-\frac{1}{2006}\right)\)
\(=\frac{98}{99}\times\frac{99}{100}\times...\times\frac{2005}{2006}\)
\(=\frac{98\times99\times...\times2005}{99\times100\times...\times2006}\)
\(=\frac{98}{2006}=\frac{49}{1003}\)
= 49\1003 đung ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
\(\left(1-\frac{1}{99}\right).\left(1-\frac{1}{100}\right).....\left(1-\frac{1}{2006}\right)\)
\(=\left(\frac{99}{99}-\frac{1}{99}\right).\left(\frac{100}{100}-\frac{1}{100}\right).....\left(\frac{2006}{2006}-\frac{1}{2006}\right)\)
\(=\frac{98}{99}.\frac{99}{100}......\frac{2005}{2006}\)
\(=\frac{98.99.....2005}{99.100....2006}\)
\(=\frac{98}{2006}=\frac{49}{2006}\)
ủng hộ nha ai k mik k lại
a)\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}......\frac{99}{100}\)
\(=\frac{1.2.3.4.....99}{2.3.4.5.6.....100}\)
\(=\frac{1}{100}\)
b) Tương tự như câu a
\(\left(1+\frac{1}{100}\right).\left(1+\frac{1}{99}\right)+\left(1+\frac{1}{98}\right)+....+\left(1+\frac{1}{2}\right)\)
= \(\frac{101}{100}.\frac{100}{99}.\frac{99}{98}.....\frac{3}{2}\)
= \(\frac{100}{2}\)
= 50
Bài 1
\(\left(1-\dfrac{1}{99}\right)\times\left(1-\dfrac{1}{100}\right)\times...\times\left(1-\dfrac{1}{2006}\right)\)
\(=\dfrac{98}{99}\times\dfrac{99}{100}\times...\times\dfrac{2005}{2006}\)
\(=\dfrac{98}{2006}\)
\(=\dfrac{49}{1003}\)
Bài 2
\(\dfrac{111}{333}=\dfrac{111:111}{333:111}=\dfrac{1}{3}\)
\(\dfrac{2222}{4444}=\dfrac{2222:2222}{4444:2222}=\dfrac{1}{2}\)
Do \(3>2\Rightarrow\dfrac{1}{3}< \dfrac{1}{2}\)
Vậy \(\dfrac{111}{333}< \dfrac{2222}{4444}\)
Bài 1.
\(\left(1-\dfrac{1}{99}\right)\times\left(1-\dfrac{1}{100}\right)\times...\times\left(1-\dfrac{1}{2006}\right)\)
\(=\dfrac{98}{99}\times\dfrac{99}{100}\times...\times\dfrac{2005}{2006}\)
\(=\dfrac{98\times99\times...\times2005}{99\times100\times...2006}\)
\(=\dfrac{98}{2006}\)
\(=\dfrac{49}{1003}\)
Bài 2.
Có: \(\dfrac{111}{333}=\dfrac{111}{3\times111}=\dfrac{1}{3}\)
\(\dfrac{2222}{4444}=\dfrac{2222}{2\times2222}=\dfrac{1}{2}\)
Vì \(\dfrac{1}{3}< \dfrac{1}{2}\) nên \(\dfrac{111}{333}< \dfrac{2222}{4444}\)
a)( 124 x 237 + 152 ) : ( 870 + 235 x 122 )
= 29540 + 29540
= 29540 x 2
= 59080
b) 101 + 100 + 99 + 98 + ... + 3 + 2 + 1
= ( 101 - 1 ) : 1 + 1] x ( 101 + 1 ) : 2
= 101 x 102 : 2
= 10302 : 2
= 5151
c) 101 - 100 + 99 - 98 + .. 3 - 2 + 1
(101-100) + (99-98) + ... + (5-4) + (3-2) +1
=1 + 1 + ... + 1 + 1 + 1
= 1 x 51
= 51
trong tích đã cho từ 1-1/99 đến 1-2006 sẽ có 1 thừa số bằng 1-1=0
=>tích đã cho bằng 0
1-1/99).(1-1/100)....(1-1/2006)
=(99/99-1/99).(100/100-1/100)....(2006/2006-1/2006) = (98/99).(99/100)...(2005/2006) =98/2006=..