Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
(1/3+1/6+1/36) +(1/10+1/15+1/45)+(1/21+1/28)
=(\(\frac{12+6+1}{36}\)+\(\frac{9+6+2}{90}\)+\(\frac{4+3}{84}\)
19/36+17/90+1/12
=(19/36+1/12)+17/90
=7/12+17/90
=105/180+34/180
=139/180
1/3 +1/6+1/10+1/15+1/21+1/28+1/36+1/45
=1/1x3+1/3x2+1/2x5+1/3x5+1/3x7+1/7x4+1/4x9+1/9x5
=1/1-1/3+1/3-1/2....+1/9-1/5
=1/1
a, (sửa đề )
\(1+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{x.\left(x+1\right)}=\frac{1999}{2000}\)
=\(1+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x.\left(x+1\right)}\right)=\frac{1999}{2000}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x+\left(x+1\right)}=1-\frac{1999}{2000}=\frac{1}{2000}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2000}\)
=\(\frac{1}{1}-\frac{1}{x+1}=\frac{1}{2000}\)
=\(\frac{1}{x+1}=\frac{1}{1}-\frac{1}{2000}=\frac{1999}{2000}\)
=> \(x+1=1:\frac{1999}{2000}=\frac{2000}{1999}\)
=>\(x=\frac{2000}{1999}-1=\frac{1}{1999}\)
Vậy x ∈{ \(\frac{1}{1999}\)}
b, \(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+.....+\frac{2}{x+\left(x+1\right)}=\frac{2}{9}\)
=> \(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+.....+\frac{2}{x+\left(x+1\right)}=\frac{2}{9}\)
=>\(\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+.....+\frac{2}{x+\left(x+1\right)}=\frac{2}{9}\)
=>2.(\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+....+\frac{1}{x.\left(x+1\right)}\))=\(\frac{2}{9}\)
=>\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+....+\frac{1}{x+\left(x+1\right)}=\frac{2}{9}:2=\frac{1}{9}\)
=>\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
=>\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
=>\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}=\frac{1}{18}\)
=>\(x+1=18\)
=>\(x=18-1=17\)
=>x∈{17}
Ta có: \(-1=-2+1;-\frac{1}{2}=-1+\frac{1}{2};-\frac{1}{4}=-\frac{1}{2}+\frac{1}{4};...;-\frac{1}{1024}=-\frac{1}{512}+\frac{1}{1024}\)
\(\Rightarrow-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(=\left(-2+1\right)+\left(-1+\frac{1}{2}\right)+\left(-\frac{1}{2}+\frac{1}{4}\right)\)\(+...+\left(-\frac{1}{512}+\frac{1}{1024}\right)\)
\(=-2+1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{4}-...-\frac{1}{512}+\frac{1}{1024}\)
\(=-2+\frac{1}{1024}\)
\(=-\frac{2047}{1024}\)
1/(1.5) + 1/(5.9) + 1/(9.13) + ... + 1/[x(x + 4)] = 21/85
1/4.[1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + ... + 1/x - 1/(x + 4)] = 21/85
1/4.[1 - 1/(x + 4)] = 21/85
1 - 1/(x + 4) = 21/85 : 1/4
1 - 1/(x + 4) = 84/85
1/(x + 4) = 1 - 84/85
1/(x + 4) = 1/85
x + 4 = 85
x = 85 - 4
x = 81