Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1-1/2)×(1-1/3)×(1-1/4)×...×(1-1/n)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times....\times\frac{n-1}{n}=\frac{1}{n}\)
Ta có :
\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(M< 1-\frac{1}{n}\)
Mà \(1-\frac{1}{n}< 1\)nên M < 1
Vậy ...
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
........
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}=\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow M=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}=\frac{n-1}{n}< 1\) (đpcm)
Áp dụng ct
Số các số hạng = (số cuối - số đầu) ÷ khoảng cách + 1
Tiếp tục áp dụng
Tổng = [(số đầu + số cuối ) × số các số hạng ] ÷ 2