Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-.............-\frac{1}{1024}\)
=> 2S = \(2x\left(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-..........-\frac{1}{1024}\right)\)
2S = \(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-..........-\frac{1}{512}\)
2S - S = \(\left(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-........-\frac{1}{512}\right)\)- \(\left(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-........-\frac{1}{1024}\right)\)
=> S = \(1+\frac{1}{1024}=\frac{1024}{1024}+\frac{1}{1024}=\frac{1025}{1024}\)
Chắc chắn 100%
-1-1/2-1/4-1/8......-1/1024
=-(1+1/2+1/4+1/8...+1/1024)
mà ta có 1024=2^10
nên -(1+1/2+1/4+1/8...+1/1024)
=-(2^9+2^8+2^7....+1)/2^10
=-(1023/1024)
=-1,99.........
mình sẽ làm lại bai này cho đúng nha
\(-1-\frac{1}{2}-\frac{1}{4}....-\frac{1}{1024}=-1-\left(\frac{1}{2}+\frac{1}{4}+...\frac{1}{1024}\right)\)
\(=-1-\left(\frac{1}{2^1}+\frac{1}{2^2}...+\frac{1}{2^{10}}\right)\)
\(=-1-\frac{1023}{1024}=\frac{-1024}{1024}-\frac{1023}{1024}=\frac{-2047}{1024}\)
vậy mới đúng nha
\(1,\frac{x+1}{x-2}=\frac{3}{4}\)
\(\Rightarrow3x-6=4x+4\)
\(\Rightarrow3x-4x=4+6\)
\(\Rightarrow-x=10\Leftrightarrow x=-10\)
\(2,\frac{x-1}{3}=\frac{x+3}{5}\)
\(\Rightarrow5x-5=3x+9\)
\(\Rightarrow5x-3x=9+5\)
\(\Rightarrow2x=14\Leftrightarrow x=7\)
\(3,\frac{2x+3}{24}=\frac{3x-1}{32}\)
\(\Rightarrow64x+96=72x-24\)
\(\Rightarrow72x-64x=24+96\)
\(\Rightarrow8x=120\)
\(\Rightarrow x=15\)
Đặt \(A=-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{2014}\)
\(\Rightarrow-A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(-A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(\Rightarrow-2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(\Rightarrow-2A-\left(-A\right)=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{10}}\right)\)
\(-A=2-\frac{1}{2^{10}}\)
\(\Rightarrow A=\frac{1}{2^{10}}-2\)
\(A,\)\(A=\left(3998+3997+4005\right)\)\(+\left(4004+4006\right)-10\)
\(A=12000+8010-10=12000+\)\(8000=20000\)
\(B,\)\(B=625\times32\times24\times250\)
\(B=\left[\left(25\times25\right)\times\left(4\times4\times2\right)\right]\times\)\(\left(4\times6\right)\times250\)
\(B=\left(25\times4\right)\times\left(25\times4\right)\times2\times6\times\left(4\times250\right)\)
\(B=100\times100\times12\times1000=120000000\)
\(C,\)\(C=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(\Rightarrow2C=\frac{2}{2}+\frac{2}{4}+\frac{2}{8}+...+\frac{2}{1024}\)\(=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)
\(\Rightarrow2C-C=\)\(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(\Rightarrow C=1-\frac{1}{1024}=\frac{1023}{1024}\). Mình làm thế cho chi tiết thôi còn để thế nào thì tùy bạn nhé.
Chúc bạn hok tốt :)
\(\Leftrightarrow\left(\frac{1}{2}\right)^{x+1}=\frac{-3}{8}+\frac{1}{2}\)(tự quy đồng)
\(\Leftrightarrow\left(\frac{1}{2}\right)^{x+1}=\frac{1}{8}\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^{x+1}=\left(\frac{1}{2}\right)^3\)
\(\Leftrightarrow x+1=3\)
\(\Leftrightarrow x=3-1\)
\(\Leftrightarrow x=2\)