Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho 3 số thực dương a;b;c thỏa mãn : a+ b + c = 1 . CMR
\(\frac{a+1}{a+b+c}+\frac{b+1}{b+ac}+\frac{c+1}{c+ab}\ge9\)Dấu " = " xay ra khi nào
Bài 1:
Ta có công thức a=a' và b khác b' thì 2 đường thẳng đó song song
Nên 2m=m-1
<=>2m - m =1
<=>m=1
Vậy khi m=1 thì 2 đường thẳng sẽ song song
Bài 2:
Để 2 đường thẳng cắt nhau tại 1 điểm thì a khác a' và b khác b'
Nên:
mx khác x
=>X khác m thì 2 đường thẳng cắt nhau
Tới đây thì bạn vẽ dồ thị là sẽ ra thôi hoặc sử dụng phương trình hoành độ giao điểm nhé
Xin lỗi vì tớ chỉ giúp được tới đây thôi <_>
\(x^2+6x+5=0\)
<=>\(x^2+x+5x+5=0\)
<=>\(x\left(x+1\right)+5\left(x+1\right)=0\)
<=>\(\left(x+1\right)\left(x+5\right)=0\hept{\begin{cases}x+1=0< =>x=-1\\x+5=0< =>x=-5\end{cases}}\)bấm máy thử nghiệm đc mà .Bài này lớp 8 mà đâu phải lớp 9
x^2+6x+5=0
<=> x^2+x+5x+5=0
<=>x(x+1)+5(x+1)=0
<=> (x+5)(x+1)=0
=> x+5=0 hoặc x+1=0 <=> x=-5 hoặc x=-1
a) ta có ap//bc nên ae/ec=ep/eb
ta có ab//cq nên ae/ec=be/eq
vậy ep/eb=be/eq nên eb^2=ep.eq
ap//bc nên ap/bc=ae/ec
nên ab/cq=ap/bc
vậy ap.cq=ab.bc ko đổi
làm cho những người sau có thể bt mà xem
\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)
a)thay \(x=2\sqrt{2}\)vào a ra có
\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)
\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)
Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)
a)
Xét hiệu \(\frac{a^3}{a^2+1}-\frac{1}{2}=\frac{2a^3-a^2-1}{2\left(a^2+1\right)}=\frac{2a^2\left(a-1\right)+\left(a-1\right)\left(a+1\right)}{2\left(a^2+1\right)}=\frac{\left(a-1\right)\left(2a^2+a+1\right)}{2\left(a^2+1\right)}\)
Do : \(a\ge1\Rightarrow a-1\ge0\)
\(a^2+a+1=\left(a+\frac{1}{4}\right)^2+\frac{3}{4}>0\Rightarrow2a^2+a+1>0\)
\(a^2+1>0\)
\(\Rightarrow\frac{\left(a-1\right)\left(2a^2+a+1\right)}{2\left(a^2+1\right)}\ge0\Leftrightarrow\frac{a^3}{a^2+1}-\frac{1}{2}\ge0\Leftrightarrow\frac{a^3}{a^2+1}\ge\frac{1}{2}\)
Tương tự \(\frac{b^3}{b^2+1}\ge\frac{1}{2};\frac{c^3}{c^2+1}\ge\frac{1}{2}\)
\(\Rightarrow\frac{a^3}{a^2+1}+\frac{b^3}{b^2+1}+\frac{c^3}{c^2+1}\ge\frac{3}{2}\)Dấu = xảy ra khi a=b=c=1
* Tham khảo :
[1-10] Fill each blank with a suitable word to complete the passage.
Many countries regard income first and foremost (1) ____as_ the primary means of determining their success in (2) ___by__ with other country. The measure divides the value of a country’s annual production (3) __comparison___ the number of people resident in the country. In 1998, however, the King of Bhutan announced that in the future his nation’s main measure of success would be happiness (4) _rather___ than income. He did this with a (5) _view____ to showing the world that money does not (6) __buy___ happiness.
A year later, the King had the fateful decision to allow television into his country. Until then, it had been banned, as (7) _almost____ all forms of advertising. But in 1999, TV sets began to be imported into the country and, as a result, people started to spend a lot of time watching television programmes. Around the (8) _same____ time, children began fighting more, crime (9) __increased___ and more (10) ___maried__ couples separated or divorced.