Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nên đợi ai đó giải hết 2 3 bài xong rồi mới đăng tiếp những bài còn lại, chứ dài vậy giải hơi nản =)))
Bài 1:
1, \(13\frac{2}{5}-\left(\frac{18}{32}-2\frac{6}{10}\right)\)
\(=\frac{67}{5}-\left(\frac{9}{16}-\frac{13}{5}\right)\)(Chuyển hỗn số thành p/số và rút gọn hai số trong ngoặc luôn)
\(=\frac{67}{5}-\left(\frac{-163}{80}\right)\)
\(=\frac{246}{16}\)
2, \(22.4\frac{5}{7}-\left(8.91+1,09\right)\)(Phần 2 viết vầy có đúng không vậy ? Nếu sai thì kêu chị sửa nhé)
\(=22.\frac{33}{7}-10\)
\(=\frac{726}{7}-10\)
\(=\frac{656}{7}\)
3, Chỗ ''3 phần 10 phần 2'' là sao :v ?
4, \(5\frac{2}{7}.\frac{8}{11}+5\frac{2}{7}.\frac{5}{11}-5\frac{2}{7}.\frac{2}{11}\)
\(=\frac{37}{7}.\frac{8}{11}+\frac{37}{7}.\frac{5}{11}-\frac{37}{7}.\frac{2}{11}\)(Chuyển hỗn số thành p/số)
\(=\frac{37}{7}.\left(\frac{8}{11}+\frac{5}{11}-\frac{2}{11}\right)\)(Dùng tính chất phân phối)
\(=\frac{37}{7}.\frac{11}{11}\)
\(=\frac{37}{7}.1=\frac{37}{7}\)
I don't now
or no I don't
..................
sorry
\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)=\frac{-3}{2^2}.\frac{-8}{3^2}...\frac{-9999}{100^2}\)
\(=-\frac{3.8...9999}{2^2.3^2...100^2}=-\frac{1.3.2.4...99.101}{2.2.3.3...100.100}=-\frac{\left(1.2....99\right).\left(3.4...101\right)}{\left(2.3...100\right).\left(2.3...100\right)}=-\frac{1.101}{100.2}=-\frac{101}{200}\)
\(< -\frac{100}{200}=\frac{1}{2}=B\)
=> A < B
1/a,
-Ta có:
$B<1\Leftrightarrow B<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10(10^{2004}+1)}{10(10^{2005}+1)}=\frac{10^{2004}+1}{10^{2005}+1}=A$
-Vậy: B<A
b,$A=1+(\frac{1}{2})^2+...+(\frac{1}{100})^2$
$\Leftrightarrow A=1+\frac{1}{2^2}+...+\frac{1}{100^2}$
$\Leftrightarrow A<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}$
$\Leftrightarrow A<1+\frac{1}{1}-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}$
$\Leftrightarrow A<1+1-\frac{1}{100}\Leftrightarrow A<2-\frac{1}{100}\Leftrightarrow A<2(đpcm)$
2,
a.
-Ta có:$\Rightarrow \frac{3x+7}{x-1}=\frac{3(x-1)+16}{x-1}=\frac{3(x-1)}{x-1}+\frac{16}{x-1}=3+\frac{16}{x-1}
-Để: 3x+7/x-1 nguyên
-Thì: $\frac{16}{x-1}$ nguyên
$\Rightarrow 16\vdots x-1\Leftrightarrow x-1\in Ư(16)\Leftrightarrow ....$
b, -Ta có:
$\frac{n-2}{n+5}=\frac{n+5-7}{n+5}=1-\frac{7}{n+5}$
-Để: n-2/n+5 nguyên
-Thì: \frac{7}{n+5} nguyên
$\Leftrightarrow 7\vdots n+5\Leftrightarrow n+5\in Ư(7)\Leftrightarrow ...$