K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2024

Bạn tính sai.

1 tháng 1 2024

2-1=3???????????

Bạn ơi bạn làm sai rồi ạ

23 tháng 2 2016

xét: Sn = 1 + 2 + 3 + 4 + ... + n (1) 
=> Sn = n + (n-1) + .. + 2 + 1 (2) 
thấy 1+n = 2 + (n-1) = 3+(n-2) = n-1 + 2 = n+1 
lấy (1) + (2) và với chú ý trên ta có: 
2.Sn = (n+1) + (n+1) +..+ (n+1) = n(n+1) (vì n số hạng giống nhau) 
=> Sn = n(n+1)/2 => Sn /n = (n+1)/2 

=> P = 1 + S2/2 + S3/3 + S4/4 +...+ Sn /n 

P = 1 + 3/2 + 4/2 + 5/2 +.. + (n+1)/2 

P = 2(2 + 3 + 4 + ... + n + n+1) = 2(1+2 +..+ n+1) - 2 = 2.S(n+1) - 2 

P = 2.(n+1)(n+2)/2 - 2 = (n+1)(n+2) - 2 = n²+3n 

Bài toán chỉ tính đến S16/16 (tức n = 16) 
P = 16² + 3.16 = ...

14 tháng 3 2016

xét: Sn = 1 + 2 + 3 + 4 + ... + n (1)
=> Sn = n + (n-1) + .. + 2 + 1 (2)
thấy 1+n = 2 + (n-1) = 3+(n-2) = n-1 + 2 = n+1
lấy (1) + (2) và với chú ý trên ta có:
2.Sn = (n+1) + (n+1) +..+ (n+1) = n(n+1) (vì n số hạng giống nhau)
=> Sn = n(n+1)/2 => Sn /n = (n+1)/2

=> P = 1 + S2/2 + S3/3 + S4/4 +...+ Sn /n

P = 1 + 3/2 + 4/2 + 5/2 +.. + (n+1)/2

P = 2(2 + 3 + 4 + ... + n + n+1) = 2(1+2 +..+ n+1) - 2 = 2.S(n+1) - 2

P = 2.(n+1)(n+2)/2 - 2 = (n+1)(n+2) - 2 = n²+3n


 bài toán chỉ tính đến S16/16 (tức n = 16)
P = 16² + 3.16 = ...

23 tháng 4 2016

MK ghi sai để mk sửa lại nha

26 tháng 3 2016

=1/2 . 2/3 ....1999/2000

=1.2....1999/2.3...2000

1/2000

26 tháng 3 2016

 

B= 3/2.4/3. ....2001/2000

B = 3.4....2001/2.3....2000

B =2001/2

10 tháng 7 2019

\(Q=\frac{2\cdot2010}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2012}}\)

\(Q=\frac{2\cdot2010}{1+\frac{1}{\frac{(1+2)\cdot2}{2}}+\frac{1}{\frac{(1+3)\cdot3}{2}}+\frac{1}{\frac{(1+4)\cdot4}{2}}+...+\frac{1}{\frac{(1+2012)\cdot2012}{2}}}\)

\(Q=\frac{2\cdot2010}{1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{2025078}}\)

\(Q=\frac{2\cdot2010}{1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}...+\frac{2}{4050156}}\)

\(Q=\frac{2\cdot2010}{1+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{2012\cdot2013}}\)

\(Q=\frac{2\cdot2010}{1+2\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right]}\)

\(Q=\frac{2\cdot2010}{1+2\left[\frac{1}{2}-\frac{1}{2013}\right]}=\frac{2\cdot2010}{1+\frac{2011}{2013}}=\frac{2\cdot2010}{\frac{4024}{2013}}=\frac{4020}{\frac{4024}{2013}}=4020\cdot\frac{2013}{4024}=...\)

Nguyễn Linh Chi ơi , hình như cô nhầm thì phải :v \(2-\frac{2}{2013}=\frac{2\cdot2013-2}{2013}=\frac{4026-2}{2013}=\frac{4024}{2013}\)

sao mà bằng \(\frac{4020}{2013}\)được cô

10 tháng 7 2019

Ta có: 

\(P=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2012}\)

\(P=1+\frac{1}{\frac{\left(1+2\right).2}{2}}+\frac{1}{\frac{\left(1+3\right).3}{2}}+...+\frac{1}{\frac{\left(1+2012\right).2012}{2}}\)

\(P=1+\frac{2}{3.2}+\frac{2}{4.3}+...+\frac{2}{2013.2012}\)

\(P=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)\

\(P=1+2\left(\frac{1}{2}-\frac{1}{2013}\right)\)

\(P=1+1-\frac{2}{2013}=2-\frac{2}{2013}=\frac{4020}{2013}\)

\(Q=\frac{2.2010}{P}=\frac{4020}{\frac{4020}{2013}}=2013\)....

10 tháng 3 2016

Đáp án

Bài giải qua 3 bước như sau:

Bước 1: Xét mẫu số của số hạng tổng quát trong tổng trên:

      S = 1 + 2 + ... + (n - 1) + n                     ( * )

      Khi viết S theo thứ tự ngược lại la có:

      S = n + (n - 1) + ... + 2 + 1                     ( ** )

     Cộng vế với vế của ( * ) và ( ** ) ta có:

     S + S = [1 + n] + [2 + (n - 1)] + ... + [(n - 1) + 2] + [n + 1]

     2 . S = [n + 1]   + [n + 1] +   . . .    + [n + 1]       + [n + 1]     (Tổng có n số hạng [n + 1] )

     2 . S = n.(n + 1)

  => S = n.(n + 1)/2

  => Số hạng tổng quát của tổng đã cho là:

     gif.latex?%5Cfrac%7B1%7D%7B1+2+...+n%7D=%5Cfrac%7B1%7D%7B%5Cfrac%7B1%7D%7B2%7D.n.%5Cleft(n+1%5Cright)%7D=%5Cfrac%7B2%7D%7Bn%5Cleft(n+1%5Cright)%7D

Bước 2: Ta có nhận xét:

    gif.latex?%5Cfrac%7B2%7D%7Bn%5Cleft(n+1%5Cright)%7D=2.%5Cleft%5B%5Cfrac%7B1%7D%7Bn%7D-%5Cfrac%7B1%7D%7Bn+1%7D%5Cright%5D=%5Cfrac%7B2%7D%7Bn%7D-%5Cfrac%7B2%7D%7Bn+1%7D

  =>  gif.latex?%5Cfrac%7B1%7D%7B1+2+...+n%7D=%5Cfrac%7B2%7D%7Bn%7D-%5Cfrac%7B2%7D%7Bn+1%7D                     ( *** )

Bước 3:  Thay n = 1, 2, ... vào ( *** ) ta được các đẳng thức tương ứng:

     gif.latex?%5Cfrac%7B1%7D%7B1+2%7D=%5Cfrac%7B2%7D%7B2%7D-%5Cfrac%7B2%7D%7B3%7D

     gif.latex?%5Cfrac%7B1%7D%7B1+2+3%7D=%5Cfrac%7B2%7D%7B3%7D-%5Cfrac%7B2%7D%7B4%7D

     gif.latex?%5Cfrac%7B1%7D%7B1+2+3+4%7D=%5Cfrac%7B2%7D%7B4%7D-%5Cfrac%7B2%7D%7B5%7D

     .   .   .   

Cộng các vế với nhau ta được:

        gif.latex?1+%5Cfrac%7B1%7D%7B1+2%7D+%5Cfrac%7B1%7D%7B1+2+3%7D+%5Cfrac%7B1%7D%7B1+2+3+4%7D+...

  gif.latex?=1+%5Cleft%5B%5Cleft(%5Cfrac%7B2%7D%7B2%7D-%5Cfrac%7B2%7D%7B3%7D%5Cright)+%5Cleft(%5Cfrac%7B2%7D%7B3%7D-%5Cfrac%7B2%7D%7B4%7D%5Cright)+%5Cleft(%5Cfrac%7B2%7D%7B4%7D-%5Cfrac%7B2%7D%7B5%7D%5Cright)+...%5Cright%5D

  gif.latex?=1+%5Cleft%5B%5Cfrac%7B2%7D%7B2%7D-%5Cfrac%7B2%7D%7B3%7D+%5Cfrac%7B2%7D%7B3%7D-%5Cfrac%7B2%7D%7B4%7D+%5Cfrac%7B2%7D%7B4%7D-%5Cfrac%7B2%7D%7B5%7D+...%5Cright%5D

  gif.latex?=1+%5Cfrac%7B2%7D%7B2%7D=2

Vậy tổng đã cho có kết quả bằng 2.

10 tháng 3 2016

Đặng Thị Thùy Linh copy đáp án trên OLM

bn có thể vào mục "toán vui mỗi tuần" của OLM
 

15 tháng 4 2016

Ta đã biết: \(1+2+3+...+n=\frac{n.\left(n+1\right)}{2}\)

Ta có: \(A=1+\frac{1}{2}.\left(\frac{2.3}{2}\right)+\frac{1}{3}.\left(\frac{3.4}{2}\right)+...+\frac{1}{20}.\left(\frac{20.21}{2}\right)\)

\(A=1+\frac{3}{2}+\frac{4}{2}+....+\frac{21}{2}\)

\(A=\frac{1}{2}.\left(2+3+....+21\right)\)

Tổng trong ngoặc có:21-2+2=20 (số hạng)

\(=>A=\frac{1}{2}.\left(\frac{\left(21+2\right).20}{2}\right)=\frac{1}{2}.230=115\)

Vậy..........

15 tháng 4 2016

Nể Hoàng Phúc giải nhanh thế !!!!

24 tháng 1 2016

\(\frac{1\left(21\right)\left(321\right)\left(4321\right)....}{1\left(12\right)\left(123\right)\left(1234\right)....}\)

24 tháng 1 2016

thế này thì tìm đến bao giờ

sai đề vì biểu thức trên chắc chắn lớn hơn 1/2 lẫn 1/3 vì biểu thức trên có chứa 2 phân số đó

15 tháng 3 2016
 

\(\frac{1}{y\left(y+1\right)}\) + \(\frac{1}{\left(y+1\right)\left(y+2\right)}\) + \(\frac{1}{\left(y+2\right)\left(y+3\right)}\) + \(\frac{1}{\left(y+3\right)\left(y+4\right)}\)\(\frac{1}{15}\)

\(\frac{1}{y}\) - \(\frac{1}{y+1}\) + \(\frac{1}{y+1}\) - \(\frac{1}{y+2}\) + \(\frac{1}{y+2}\) - \(\frac{1}{y+3}\) + \(\frac{1}{y+3}\) - \(\frac{1}{y+4}\) = \(\frac{1}{15}\) 

\(\frac{1}{y}\) + \(\frac{1}{y+1}\) - \(\frac{1}{y+1}\) + \(\frac{1}{y+2}\) - \(\frac{1}{y+2}\) + \(\frac{1}{y+3}\) - \(\frac{1}{y+3}\) - \(\frac{1}{y+4}\) = \(\frac{1}{15}\)

\(\frac{1}{y}\) - \(\frac{1}{y+4}\) = \(\frac{1}{15}\)

\(\frac{4}{y\left(y+4\right)}\) = \(\frac{1}{15}\) => \(\frac{4}{y\left(y+4\right)}\)\(\frac{4}{60}\)

=> y(y+4)=60 Mà 60 = 1.60=2.30=3.20=4.15=5.12=6.10

Vậy y(y+4)=6.10 => y=6. Vậy y=6