K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

A(n)=1/n.[n(n+1)/2]=(n+1)/2

=>A=1/2.(n+1)[(n+1)+2]/2

A=(n+1)(n+2)/4

n=50

A=51.52/4=51.13

6 tháng 5 2016

Ta có:

\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+3+4+...+100}\)

\(A=3\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+4+...+100}\right)\)

Đặt \(B=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+4+...+100}\), khi đó ta đc:

\(B=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+4+...+100}\)

Vì tổng số hạng bằng (số cuối + số đầu) . số số hạng : 2 nên ta có:

\(B=1+\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+\frac{1}{\left(1+4\right).4:2}+...+\frac{1}{\left(1+100\right).100:2}\)

\(B=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{100.101}\)

\(B=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\)

\(B=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(B=2.\left(1-\frac{1}{101}\right)\)

\(B=2.\frac{100}{101}=\frac{200}{101}\)

Ta có:

\(A=3.B\Rightarrow A=3.\frac{200}{101}=\frac{600}{101}\)

Vậy \(A=\frac{600}{101}\)

6 tháng 5 2016

để mình giúp  hihi

19 tháng 11 2018

Bài 3: a) Xét A=(1+1/2+1/3+....+1/98).2.3.4.5.....98

=(1+1/2+1/3+....+1/98).(9.11).2.3.4.....98

=(1+1/2+1/3+....+1/98).99.2.3.4....98⋮99
(đpcm)

2 tháng 7 2016

khó z lớp mấy z

3 tháng 11 2019

bạn áp dụng dãy số cách đều đã học từ tiểu học sẽ nhanh hơn nhé!

XEM NHÁ:

\(B=1+2+3+...+98+99\)

Áp dụng dãy số cách đều, ta có:

Tổng= (99+1).99:2=4950

3 tháng 11 2019

cảm ơn bn hiền yeu

19 tháng 7 2019
https://i.imgur.com/Oi0OUgw.jpg
25 tháng 8 2019

Tính chất đặc trưng của tập hợp A là: Các số đểu cách nhau 2 đơn vị

Tính chất đặc trưng của tập hợp B là: Các số theo thứ tự từ bé đến lớn

Tính chất đặc trưng của tập hợp C là: Các số đểu cách nhau 2 thừa số 

Tính chất đặc trưng của tập hợp D là: Các số đều cách nhau 4 đơn vị