K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

Làm rồi, nhưng ko nhớ bạn ơi, để xem đã nhé

13 tháng 1 2017

Ta co a/b=c/b => a=c thi a^2=c^2

=>a^2+c^2/b^2+b^2=2.a^2/2.b^2=>bt bang (a/b)2=a/b (DPCM)

16 tháng 7 2019

1. Ta có: \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\frac{a}{c}=\frac{b}{d}=\frac{2a^2}{2c^2}=\frac{3ab}{3cd}=\frac{4b^2}{4d^2}=\frac{2a^2-3ab+4b^2}{2c^2-3cd+4d^2}=\frac{5b^2}{5d^2}=\frac{6ab}{6cd}=\frac{5b^2+6ab}{5d^2+6cd}\)

Suy ra : \(\frac{2a^2-3ab+4b^2}{2c^2-3cd+4d^2}=\frac{5b^2+6ab}{5d^2+6cd}\)

\(\Rightarrow\frac{2a^2-3ab+4b^2}{5b^2+6ab}=\frac{2c^2-3cd+4d^2}{5d^2+6cd}\) \(\left(dpcm\right)\)

16 tháng 7 2019

ths bn nhiều

14 tháng 7 2019

a)Ta có \(\frac{a}{b}=\frac{b}{c}=>\frac{a^2}{b^2}=\frac{b^2}{c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)

Mà \(\frac{a^2}{b^2}=\frac{ab}{bc}=\frac{a}{c}\)nên\(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)(dpcm)

b) Ta có : \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)(cm ở câu a)

\(=>\frac{b^2+c^2}{a^2+b^2}=\frac{c}{a}=>\frac{b^2+c^2}{a^2+b^2}-1=\frac{c}{a}-1=>\frac{c^2-a^2}{a^2+b^2}=\frac{c-a}{a}\)(dpcm)

22 tháng 1 2017

a) Ta có :

\(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\)
\(\Rightarrow\frac{a^2+c^2}{c^2+b^2}=\frac{a^2}{c^2}=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)

\(\Rightarrow\frac{a^2+c^2}{c^2+b^2}=\frac{a}{b}\)

22 tháng 1 2017

a) Ta có : \(\frac{a}{c}=\frac{c}{b}\Rightarrow a.b=c^2\)

CMR : \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)

Thay vào

28 tháng 1 2017

Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\left(a+b+c>0\right)\)

\(\Rightarrow\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=2\)

\(\Rightarrow\left(\frac{b+c}{a}\right)^2=\left(\frac{c+a}{b}\right)^2=\left(\frac{a+b}{c}\right)^2=2^2\)

\(\Rightarrow\frac{\left(b+c\right)^2}{a^2}=\frac{\left(c+a\right)^2}{b^2}=\frac{\left(a+b\right)^2}{c^2}=4\)

\(\Rightarrow\frac{\left(a+b\right)^2}{c^2}+\frac{\left(c+a\right)^2}{b^2}+\frac{\left(b+c\right)^2}{a^2}=4+4+4=12\left(đpcm\right)\)

Vậy...

28 tháng 1 2017

cảm ơn bn !

bn biết lm bài này ko ?

lm luôn giúp mik vs !

link :https://hoc24.vn/hoi-dap/question/174562.html

10 tháng 11 2016

em gửi bài qua fb của thầy nhé thầy HD giải cho, tìm fb của thầy qua sđt: 0975705122

7 tháng 1 2018

Ta có :

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\)( 1 )

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra : \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)

TH1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{c}\)( 3 )

TH2 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\)( 4 )

Từ ( 3 ) và ( 4 ) suy ra : \(\frac{a}{c}=\frac{b}{d}\)hay \(\frac{a}{b}=\frac{c}{d}\)

TH2 : \(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{2b}{2c}=\frac{b}{c}\)( 5 )

\(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{2a}{2d}=\frac{a}{d}\)( 6 )

Từ ( 5 ) và ( 6 ) suy ra : \(\frac{b}{c}=\frac{a}{d}\)hay \(\frac{a}{b}=\frac{d}{c}\)

Vậy nếu \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)thì \(\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)

11 tháng 2 2017

Đặt \(\frac{a}{c}=\frac{c}{b}=k\)

\(\Rightarrow k=\frac{a}{c}=\frac{c}{b}\Rightarrow k^2=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\left(1\right)\)

Từ \(k=\frac{a}{c}=\frac{c}{b}\Rightarrow k^2=\frac{a^2}{c^2}=\frac{c^2}{b^2}\)

Áp dụng tc dãy ti số bằng nhau ta có:

\(k^2=\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\left(2\right)\)

Từ (1), (2)\(\Rightarrow\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\left(đpcm\right)\)

4 tháng 4 2020

Câu hỏi của Siêu trộm ánh trăng - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo link trên nhé!