K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2017

0 = 0 nhé bạn

7 tháng 2 2017

Kết Quả là 0

14 tháng 1 2019

a) ( x-1) x + 2 = (x-1) x + 6

\(\Leftrightarrow\left(x-1\right)^x+2-\left(x-1\right)^x-6=0\)

\(\Leftrightarrow-4=0\) ( vô lý ) 

Vậy phương trình vô nghiệm 

b) (x+20)100 + |y+4| = 0  

Vì \(\left(x+2\right)^{100}\ge0\forall x;\left|y+4\right|\ge0\forall y\)

\(\Rightarrow\hept{\begin{cases}\left(x+20\right)^{100}=0\\\left|y+4\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+20=0\\y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-20\\y=-4\end{cases}}\)

Vậy x= -20; y= -4

15 tháng 11 2017

ABCDE1212

Tam giác vuông CBE có \(\widehat{E}+\widehat{B_1}=90^o\) (1)

Tam giác vuông ACD có \(\widehat{D_1}+\widehat{B_2}=90^o\) (2)

Mà \(\widehat{B_1}=\widehat{B_2}\) (tính chất phân giác) và \(\widehat{D_1}=\widehat{D_2}\)(đối đỉnh) nên suy ra \(\widehat{E}=\widehat{D_2}\)

=> Tam giác CDE cân ở C

ở phầndòng thứ 2 của bạn GV phải là ACB chứ

7 tháng 9 2021

Bài 4

a/ \(x=\widehat{ABC};y=\widehat{ADC}\)

Ta có a//b; \(a\perp c\Rightarrow b\perp c\Rightarrow x=\widehat{ABC}=90^o\)

Xét tứ giác ABCD

\(y=\widehat{ADC}=360^o-\widehat{BAD}-\widehat{ABC}-\widehat{BCD}\) (tổng các góc trong của tứ giác = 360 độ)

\(\Rightarrow y=\widehat{ADC}=360^o-90^o-90^o-130^o=50^o\)

b/ Kéo dài n về phí B cắt AC tại D

\(\Rightarrow\widehat{CBD}=180^o-\widehat{nBC}=180^o-105^o=75^o\)

Xét tg BCD có

\(\widehat{BDC}=180^o-\widehat{CBD}-\widehat{BCD}=180^o-75^o-60^o=45^o=\widehat{mAC}\)

=> Am//Bn (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 tạo thành hai góc đồng vị bằng nhau thì chúng // với nhau)

Bài 5

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3a}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)

Ta có \(\frac{a}{3b}=\frac{b}{3c}=\frac{a+b}{3\left(b+c\right)}=\frac{1}{3}\Rightarrow\frac{a+b}{b+c}=1\Rightarrow a+b=b+c\)

\(\frac{b}{3c}=\frac{c}{3a}=\frac{b+c}{3\left(c+a\right)}=\frac{1}{3}\Rightarrow\frac{b+c}{c+a}=1\Rightarrow b+c=c+a\)

\(\Rightarrow a+b=b+c=c+a\)

\(\frac{c}{3a}=\frac{a}{3b}=\frac{c+a}{3\left(a+b\right)}=\frac{1}{3}\Rightarrow\frac{c+a}{a+b}=1\)

Từ \(\frac{a+b}{b+c}=\frac{a}{b+c}+\frac{b}{b+c}=\frac{a}{b+c}+\frac{b}{c+a}=1\) (1)

Từ \(\frac{b+c}{c+a}=\frac{b}{c+a}+\frac{c}{c+a}=\frac{b}{c+a}+\frac{c}{a+b}=1\) (2)

Từ \(\frac{c+a}{a+b}=\frac{c}{a+b}+\frac{a}{a+b}=\frac{c}{a+b}+\frac{a}{b+c}=1\) (3)

Công 2 vế của (1) (2) và (3)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c}{a+b}+\frac{a}{b+c}=3\)

\(\Rightarrow2\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=3.\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{3}{2}\)

\(\Rightarrow M=2018\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=\frac{2018.3}{2}=3027\)

15 tháng 9 2020

( x + 1 )( x - 2 ) < 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}\)( loại )

2. \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\Leftrightarrow-1< x< 2\)

Vậy với -1 < x < 2 thì ( x + 1 )( x - 2 ) < 0

31 tháng 10 2019

\(3\sqrt{x}-2x=0\)

\(\Leftrightarrow3\sqrt{x}=2x\)

\(\Leftrightarrow\sqrt{x}=\frac{2x}{3}\)

\(\Leftrightarrow\left(\sqrt{x}\right)^2=\frac{4x^2}{9}\)

\(\Leftrightarrow x=\frac{4x^2}{9}\)

\(\Leftrightarrow\frac{4x^2}{x}=9\)

\(\Leftrightarrow4x=9\)

\(\Leftrightarrow x=\frac{9}{4}\)

31 tháng 10 2019

\(3\sqrt{x}-2x=0\)

\(\Leftrightarrow9x-4x^2=0\)

\(\Leftrightarrow x\left(9-4x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\9-4x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{9}{4}\end{cases}}}\)

1 tháng 8 2017

Để ;(x + 1).(x - 3) < 0 thì ta có 2 trường hợp

Th1 : \(\hept{\begin{cases}x+1< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>3\end{cases}\left(loai\right)}}\)

Th2 : \(\hept{\begin{cases}x+1>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x< 3\end{cases}\Rightarrow}-1< x< 3}\)