K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2023

A = \(\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2=\left(x^2+y^2\right)+\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+4\)

<=> 2A = \(2\left(x^2+y^2\right)+2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+8\)

Ta có \(2\left(x^2+y^2\right)=\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\)(Bất đẳng thức Bunyakovsky) (1) 

Áp dụng tương tự ta có

 \(2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)=\left(1^2+1^2\right).\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)

\(\ge\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\) (BĐT Bunyakovsky)

\(\ge\left(\dfrac{4}{x+y}\right)^2=\dfrac{16}{\left(x+y\right)^2}=16\) (BĐT Schwarz) (2) 

Từ (1) và (2) ta có \(2A\ge1+16+8=25\Leftrightarrow A\ge\dfrac{25}{2}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{y}\\x=y\\x+y=1\end{matrix}\right.\Leftrightarrow x=y=\dfrac{1}{2}\)

Vậy \(A_{min}=\dfrac{25}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)

 

23 tháng 8 2019

mong mọi người nhanh giúp

22 tháng 5 2017

x,y>0 => theo bdt AM-GM thì x+y >/ 2 căn (xy)=2 , x^2+y^2 >/ 2xy=2 (do xy=1)

P=(x+y+1)(x^2+y^2)+4/(x+y)

>/ 2(x+y+1)+4/(x+y)=[(x+y)+4/(x+y)]+(x+y+2)

x,y>0=>x+y>0 => theo bdt AM-GM thì P >/ 2.2+2+2=8 

minP=8 

16 tháng 6 2019

Cách của mình dài ,bạn nào có cách khác ngắn gọn hơn thì chỉ cho mình với ạ. Cảm ơn

Trước hết ta chứng minh  BĐT phụ sau: \(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a+x\right)^2+\left(b+y\right)^2}.\)(*)

Thật vậy: \(ax+by\le\sqrt{\left(ax+by\right)^2}\le\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\)(BĐT bunhiacopxi)

\(\Leftrightarrow a^2+b^2+x^2+y^2+2\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\ge a^2+b^2+x^2+y^2+2\left(ax+by\right)\)

\(\Leftrightarrow\left(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\right)^2\ge\left(a+x\right)^2+\left(b+y\right)^2\)

\(\Leftrightarrow\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\). BĐT đã được chứng minh

Xét : \(\left(x+\sqrt{1+x^2}\right)\left(x-\sqrt{1+x^2}\right)=x^2-\left(1+x^2\right)=-1.\)

Theo giả thết : \(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2018\)

\(\Rightarrow2018\left(x-\sqrt{1+x^2}\right)=-\left(y+\sqrt{1+y^2}\right).\)

\(\Leftrightarrow2018x+y=2018\sqrt{1+x^2}-\sqrt{1+y^2}.\)(1)

Tương tự:

Xét:\(\left(y+\sqrt{1+y^2}\right)\left(y-\sqrt{1+y^2}\right)=y^2-\left(1+y^2\right)=-1\)

Theo giả thiết : \(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2018\)

\(\Rightarrow2018\left(y-\sqrt{1+y^2}\right)=-\left(x+\sqrt{1+x^2}\right)\)

\(\Leftrightarrow x+2018y=-\sqrt{1+x^2}+2018\sqrt{1+y^2}\)(2)

Cộng các vế của (1) và (2) lại ta được

\(2019\left(x+y\right)=2017\left(\sqrt{1+x^2}+\sqrt{1+y^2}\right)\)

Khi đó áp dụng bất đẳng thức (*) ta có;

\(2019\left(x+y\right)=2017\left(\sqrt{1^2+x^2}+\sqrt{1^2+y^2}\right)\ge2017\left(\sqrt{\left(1+1\right)^2+\left(x+y\right)^2}\right)\)

\(\Rightarrow2019\left(x+y\right)\ge2017\sqrt{4+\left(x+y\right)^2}\)

Đặt \(x+y=a>0\)ta có;

\(2019a\ge2017\sqrt{4+a^2}\Leftrightarrow2019^2a^2\ge2017^2a^2+2017^2.4\)

\(\Leftrightarrow\left(2019^2-2017^2\right)a^2\ge\left(2017.2\right)^2\Leftrightarrow a^2\ge\frac{2017^2.2.2}{2.4036}\Leftrightarrow a^2\ge\frac{2017^2}{2018}\)

\(\Rightarrow a\ge\frac{2017}{\sqrt{2018}}\Rightarrow x+y\ge\frac{2017}{\sqrt{2018}}.\)

Vậy giá trị nhỏ nhất của biểu thức P=x+y là \(\frac{2017}{\sqrt{2018}}\)

Dấu '=' xảy ra khi \(x=y=\frac{2017}{2\sqrt{2018}}.\)

16 tháng 6 2019

bn đào thu hà k cần cm bdt phụ đâu đấy là bdt mincopski đc dùng luôn

13 tháng 6 2017

\(A=\left(x^4+1\right)\left(y^4+1\right)=x^4y^4+x^4+y^4+1\)

\(=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2+x^4y^4+1\)

\(=\left[10-2xy\right]^2-2x^2y^2+x^4y^4+1\)

\(=2x^2y^2+x^4y^4-40xy+101\)

\(=\left(x^4y^4-8x^2y^2+16\right)+10\left(x^2y^2-4xy+4\right)+45\)

\(=\left(x^2y^2-4\right)^2+10\left(xy-2\right)^2+45\ge45\)

Dấu = xảy ra khi \(\hept{\begin{cases}x+y=\sqrt{10}\\xy=2\end{cases}}\)

13 tháng 6 2017

\(\left(x^4+1\right)\left(y^4+1\right)\ge\left(x^2+y^2\right)^2\)

mà \(^{x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=5}\)

=>\(\left(x^4+1\right)\left(y^4+1\right)\ge\left(x^2+y^2\right)^2\ge25\)

20 tháng 4 2020

Max=3,222222

19 tháng 7 2020

\(T=21\left(x+\frac{1}{y}\right)+3\left(y+\frac{1}{x}\right)\)

\(=3\left(\frac{1}{x}+\frac{x}{9}\right)+21\left(\frac{1}{y}+\frac{y}{9}\right)+\frac{62x}{9}+\frac{2y}{3}\)

\(\ge6\sqrt{\frac{1}{x}\cdot\frac{x}{9}}+42\sqrt{\frac{1}{y}\cdot\frac{y}{9}}+\frac{62\cdot3}{9}+\frac{2\cdot3}{9}\)

\(=\frac{112}{3}\)

Đẳng thức xảy ra tại x=3;y=3