Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 0,4(3) = \(\frac{4,\left(3\right)}{10}=\frac{4+\frac{1}{3}}{10}=\frac{13}{30}\); 0,6(2) = \(\frac{6,\left(2\right)}{10}=\frac{6+\frac{2}{9}}{10}=\frac{56}{90}=\frac{28}{45}\); 0,5(8) = \(\frac{5,\left(8\right)}{10}=\frac{5+\frac{8}{9}}{10}=\frac{53}{90}\)
Vậy A = \(\frac{13}{30}+\frac{28}{45}.\frac{5}{2}-\frac{\frac{5}{6}}{\frac{53}{90}}:\frac{2700}{53}\) = \(\frac{13}{30}+\frac{14}{9}-\frac{5}{6}.\frac{90}{53}.\frac{53}{2700}=\frac{13}{30}+\frac{14}{9}-\frac{1}{36}=\frac{353}{180}\)
b) 0,(5) = 5/9; 0,(2) = 2/9
B = \(\left(\frac{5}{9}.\frac{2}{9}\right):\left(\frac{10}{3}.\frac{25}{33}\right)-\left(\frac{2}{5}.\frac{4}{3}\right):\frac{4}{3}\)
B = \(\frac{10}{81}.\frac{3.33}{10.25}-\frac{2}{5}=\frac{11}{225}-\frac{2}{5}=-\frac{79}{225}\)
a) \(2x\left(x-\frac{1}{7}\right)=0\)
⇒\(\left[{}\begin{matrix}2x=0\\x-\frac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{7}\end{matrix}\right.\)
Vậy \(x=0;x=\frac{1}{7}\)
b) \(\frac{1}{2}x+\frac{3}{5}x=\frac{-33}{25}\\ \left(\frac{1}{2}+\frac{3}{5}\right)x=\frac{-33}{25}\\ \left(\frac{5}{10}+\frac{6}{10}\right)x=\frac{-33}{25}\\ \frac{11}{10}x=\frac{-33}{25}\\ x=\frac{-33}{25}:\frac{11}{10}\\ x=\frac{-33.10}{25.11}\\ x=\frac{-6}{5}\)
Vậy x = \(\frac{-6}{5}\)
c) \(\left(\frac{2}{3}x-\frac{4}{9}\right)\left(\frac{1}{2}+\frac{-3}{7}:x\right)=0\\ \Rightarrow\left[{}\begin{matrix}\frac{2}{3}x-\frac{4}{9}=0\\\frac{1}{2}+\frac{-3}{7}:x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{2}{3}x=\frac{4}{9}\\\frac{-3}{7}:x=\frac{-1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{4}{9}:\frac{2}{3}=\frac{4.3}{9.2}=\frac{2}{3}\\x=\frac{-3}{7}:\frac{-1}{2}=\frac{-3.2}{7.\left(-1\right)}=\frac{6}{7}\end{matrix}\right.\)
a) \(2x\left(x-\frac{1}{7}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-\frac{1}{7}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0:2=0\\x=0+\frac{1}{7}=\frac{1}{7}\end{matrix}\right.\)
b) \(\frac{1}{2}x+\frac{3}{5}x=-\frac{33}{25}\)
\(\Rightarrow x\left(\frac{1}{2}+\frac{3}{5}\right)=-\frac{33}{25}\)
\(\Rightarrow x\frac{11}{10}=-\frac{33}{25}\)
\(\Rightarrow x=\left(-\frac{33}{25}\right):\frac{11}{10}=-\frac{33}{25}.\frac{10}{11}=-\frac{6}{5}\)
c) \(\left(\frac{2}{3}x-\frac{4}{9}\right)\left(\frac{1}{2}+\frac{-3}{7}:x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2}{3}x-\frac{4}{9}=0\\\frac{1}{2}+\frac{-3}{7}:x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2}{3}x=0+\frac{4}{9}=\frac{4}{9}\\-\frac{3}{7}:x=0-\frac{1}{2}=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{4}{9}:\frac{2}{3}=\frac{4}{9}.\frac{3}{2}=\frac{2}{3}\\x=\left(-\frac{3}{7}\right):\frac{-1}{2}=\left(-\frac{3}{7}\right).\left(-2\right)=\frac{6}{7}\end{matrix}\right.\)
a)\(0,45-\left|1,3-x\right|=0\)
\(\Leftrightarrow\left|1,3-x\right|=0,45-0\)
\(\Leftrightarrow\hept{\begin{cases}1,3-x=0,45\\1,3-x=-0,45\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1,3-0,45\\x=1,3+0,45\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0,85\\x=1,75\end{cases}}\)
Vậy x = 0,85 ; x = 1,75
b) \(\left|3x-5\right|-\frac{1}{7}=\frac{1}{3}\)
\(\Leftrightarrow\left|3x-5\right|=\frac{1}{3}+\frac{1}{7}\)
\(\Leftrightarrow\left|3x-5\right|=\frac{10}{21}\)
\(\Leftrightarrow\hept{\begin{cases}3x-5=\frac{10}{21}\\3x-5=-\frac{10}{21}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}3x=\frac{10}{21}+5\\3x=-\frac{10}{21}+5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}3x=\frac{115}{21}\\3x=\frac{95}{21}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{115}{63}\\x=\frac{95}{63}\end{cases}}\)
Vậy x = .........................
a) \(3,6-\left|x-0,4\right|=0\)
\(\Leftrightarrow\left|x-0,4\right|=3,6\)
\(\Leftrightarrow\left[{}\begin{matrix}x-0,4=3,6\\x-0,4=-3,6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3,2\end{matrix}\right.\)
Vậy \(x\in\left\{4;-3,2\right\}\)
b) Ta có:
\(\frac{x}{2}=y=\frac{z}{3}=\frac{2y}{2}=\frac{x-2y+z}{2-2+3}=\frac{210}{3}=70\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=70\\y=70\\\frac{z}{3}=70\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=140\\y=70\\z=210\end{matrix}\right.\)
Vậy \(x=140\); \(y=70\); \(z=210\)
c)\(\left|x+0,25\right|-4=\frac{1}{4}\)
\(\Leftrightarrow\left|x+\frac{1}{4}\right|=\frac{17}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{1}{4}=\frac{17}{4}\\x+\frac{1}{4}=\frac{-17}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{-9}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{4;\frac{-9}{2}\right\}\)
d) \(x:\left(0,25\right)^4=\left(0,5\right)^2\)
\(\Leftrightarrow x=\left(0,25\right)^4.\left(0,5\right)^2\)
\(\Leftrightarrow x=\left(0,5\right)^8.\left(0,5\right)^2\)
\(\Leftrightarrow x=\left(0,5\right)^{10}=\left(\frac{1}{2}\right)^{10}=\frac{1}{2^{10}}=\frac{1}{1024}\)
Vậy \(x=\frac{1}{1024}\)
e) \(3^{x-1}+5.3^{x-1}=162\)
\(\Leftrightarrow6.3^{x-1}=162\)
\(\Leftrightarrow3^{x-1}=27\)
\(\Leftrightarrow3^{x-1}=3^3\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=4\)
f) \(\frac{x}{-25}=\frac{2}{5}\)
\(\Leftrightarrow x=\left(-25\right).\frac{2}{5}=-10\)
Vậy \(x=-10\)
g) \(\left|x+\frac{3}{4}\right|-\frac{3}{4}=\sqrt{\frac{1}{9}}\)
\(\Leftrightarrow\left|x+\frac{3}{4}\right|-\frac{3}{4}=\frac{1}{3}\)
\(\Leftrightarrow\left|x+\frac{3}{4}\right|=\frac{13}{12}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{3}{4}=\frac{13}{12}\\x+\frac{3}{4}=-\frac{13}{12}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=-\frac{11}{6}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{1}{3};-\frac{11}{6}\right\}\)
a) \(3,6-\left|x-0,4\right|=0\)
\(\Rightarrow\left|x-0,4\right|=3,6-0\)
\(\Rightarrow\left|x-0,4\right|=3,6.\)
\(\Rightarrow\left[{}\begin{matrix}x-0,4=3,6\\x-0,4=-3,6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3,6+0,4\\x=\left(-3,6\right)+0,4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-3,2\end{matrix}\right.\)
Vậy \(x\in\left\{4;-3,2\right\}.\)
c) \(\left|x+0,25\right|-4=\frac{1}{4}\)
\(\Rightarrow\left|x+\frac{1}{4}\right|=\frac{1}{4}+4\)
\(\Rightarrow\left|x+\frac{1}{4}\right|=\frac{17}{4}.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{4}=\frac{17}{4}\\x+\frac{1}{4}=-\frac{17}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{17}{4}-\frac{1}{4}\\x=\left(-\frac{17}{4}\right)-\frac{1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-\frac{9}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{4;-\frac{9}{2}\right\}.\)
d) \(x:\left(0,25\right)^4=\left(0,5\right)^2\)
\(\Rightarrow x:\left(0,25\right)^4=0,25\)
\(\Rightarrow x=\left(0,25\right).\left(0,25\right)^4\)
\(\Rightarrow x=\left(0,25\right)^5\)
\(\Rightarrow x=\frac{1}{1024}\)
Vậy \(x=\frac{1}{1024}.\)
Chúc bạn học tốt!
\(a,5,5-\left|x-0,4\right|=-1\frac{1}{5}\)
\(\Rightarrow5,5-\left|x-0,4\right|=-\frac{6}{5}\)
\(\Rightarrow-\left|x-0,4\right|=-\frac{6}{5}-5,5=-6,7\)
\(\Rightarrow\left|x-0,4\right|=6,7\)
\(\Rightarrow x-0,4=\pm6,7\)
\(\Rightarrow\orbr{\begin{cases}x-0,4=6,7\\x-0,4=-6,7\end{cases}\Rightarrow\orbr{\begin{cases}x=7,1\\x=-6,3\end{cases}}}\)
\(a,5,5-\left|x-0,4\right|=-1\frac{1}{5}\)
=> \(\left|x-0,4\right|=5,5-\left[-\frac{6}{5}\right]=5,5+1,2=6,7\)
=> \(\left|x-0,4\right|=\pm6,7\)
Xét hai trường hợp :
TH1 : x - 0,4 = 6,7
=> x = 6,7 + 0,4 = 7,1
TH2 : x - 0,4 = -6,7
=> x = -6,7 + 0,4 =-6,3
\(b,\left[1-\frac{3}{4}\left|x\right|\right]^2=\frac{16}{25}\)
=> \(\left[1-\frac{3}{4}\left|x\right|\right]=\pm\sqrt{\frac{16}{25}}\)
=> \(\left[1-\frac{3}{4}\left|x\right|\right]=\pm\frac{4}{5}\)
=> \(\orbr{\begin{cases}1-\frac{3}{4}\left|x\right|=\frac{4}{5}\\1-\frac{3}{4}\left|x\right|=-\frac{4}{5}\end{cases}}\)=> \(\orbr{\begin{cases}x=\pm\frac{4}{15}\\x=\pm\frac{12}{5}\end{cases}}\)
\(c,\left[0,1\left|x\right|-\frac{1}{2}\right]\left[0,5-\left|x\right|\right]=0\)
=> \(\orbr{\begin{cases}0,1\left|x\right|-\frac{1}{2}=0\\0,5-\left|x\right|=0\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{1}{10}\left|x\right|=\frac{1}{2}\\\left|x\right|=0,5\end{cases}}\)
=> \(\orbr{\begin{cases}\left|x\right|=5\\\left|x\right|=0,5\end{cases}}\)=> \(\orbr{\begin{cases}x\in\left\{5;-5\right\}\\x\in\left\{0,5;-0,5\right\}\end{cases}}\)
d, Xét hai trường hợp rồi ra kết quả thôi