Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\dfrac{2}{3}+\dfrac{3}{4}.\left(\dfrac{-4}{9}\right)=\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}\)
b) \(B=2\dfrac{3}{11}.1\dfrac{1}{12}.\left(-2,2\right)=\dfrac{25}{11}.\dfrac{13}{12}.\dfrac{-11}{5}=-\dfrac{65}{12}\)
c) \(C=\left(\dfrac{3}{4}-0,2\right)\left(0,4-\dfrac{4}{5}\right)=\left(\dfrac{3}{4}-\dfrac{1}{5}\right)\left(\dfrac{2}{5}-\dfrac{4}{5}\right)=\dfrac{11}{20}\left(\dfrac{-2}{5}\right)=\dfrac{-11}{50}\)
\(a,\left(7+3\dfrac{1}{4}-\dfrac{3}{5}\right)+\left(0,4-5\right)-\left(4\dfrac{1}{4}-1\right)\)
\(=\left(7+\dfrac{13}{4}-\dfrac{3}{5}\right)-\dfrac{23}{5}-\left(\dfrac{17}{4}-1\right)\)
\(=7+\dfrac{13}{4}-\dfrac{3}{5}-\dfrac{23}{5}-\dfrac{17}{4}+1\)
\(=\left(7+1\right)+\left(\dfrac{13}{4}-\dfrac{17}{4}\right)-\left(\dfrac{3}{5}+\dfrac{23}{5}\right)\)
\(=8-\dfrac{4}{4}-\dfrac{26}{5}\)
\(=7-\dfrac{26}{5}\)
\(=\dfrac{9}{5}\)
\(b,\dfrac{2}{3}-\left[\left(-\dfrac{7}{4}\right)-\left(\dfrac{1}{2}+\dfrac{3}{8}\right)\right]\)
\(=\dfrac{2}{3}-\left(-\dfrac{7}{4}-\dfrac{1}{2}-\dfrac{3}{8}\right)\)
\(=\dfrac{2}{3}-\left(-\dfrac{14}{8}-\dfrac{4}{8}-\dfrac{3}{8}\right)\)
\(=\dfrac{2}{3}-\left(-\dfrac{21}{8}\right)\)
\(=\dfrac{2}{3}+\dfrac{21}{8}\)
\(=\dfrac{79}{24}\)
\(c,\left(9-\dfrac{1}{2}-\dfrac{3}{4}\right):\left(7-\dfrac{1}{4}-\dfrac{5}{8}\right)\)
\(=\left(\dfrac{36}{4}-\dfrac{2}{4}-\dfrac{3}{4}\right):\left(\dfrac{56}{8}-\dfrac{2}{8}-\dfrac{5}{8}\right)\)
\(=\dfrac{31}{4}:\dfrac{49}{8}\)
\(=\dfrac{62}{49}\)
\(d,3-\dfrac{1-\dfrac{1}{7}}{1+\dfrac{1}{7}}=3-\dfrac{\dfrac{7}{7}-\dfrac{1}{7}}{\dfrac{7}{7}+\dfrac{1}{7}}=3-\left(\dfrac{6}{7}:\dfrac{8}{7}\right)=3-\dfrac{3}{4}=\dfrac{9}{4}\)
a: \(=\dfrac{2}{3}+\dfrac{38}{7}\cdot\dfrac{1}{2}-\dfrac{9}{7}+\dfrac{1}{12}\cdot16\)
\(=\dfrac{2}{3}+\dfrac{4}{3}+\dfrac{19}{7}-\dfrac{9}{7}=2+\dfrac{10}{7}=\dfrac{24}{7}\)
b: \(=\dfrac{11}{4}\cdot\dfrac{-2}{5}-\dfrac{11}{4}\cdot\dfrac{8}{5}+\dfrac{11}{4}\cdot\dfrac{-6}{5}\)
\(=\dfrac{11}{4}\cdot\dfrac{-16}{5}=\dfrac{-44}{5}\)
\(A=\dfrac{\sqrt{\dfrac{9}{4}-3^{-1}+2018^0}}{25\%+1\dfrac{1}{4}-1,3}-\dfrac{\left(-\dfrac{1}{2}\right)^2-\sqrt{\dfrac{4}{9}}+0,4}{0,6-\dfrac{2}{3}.\left(-\dfrac{1}{4}-\dfrac{1}{2}\right)}\)
\(A=\dfrac{\sqrt{\dfrac{9}{4}-\dfrac{1}{3}+1}}{\dfrac{1}{4}+\dfrac{5}{4}-\dfrac{13}{10}}-\dfrac{\dfrac{1}{4}-\dfrac{2}{3}+\dfrac{2}{5}}{\dfrac{3}{5}-\dfrac{2}{3}\left(-\dfrac{1}{4}-\dfrac{1}{2}\right)}\)
\(A=\dfrac{\sqrt{\dfrac{35}{12}}}{\dfrac{1}{5}}-\dfrac{-\dfrac{1}{60}}{\dfrac{11}{10}}\)
\(A=\dfrac{5\sqrt{105}}{6}+\dfrac{11}{66}\)
\(A=\dfrac{55\sqrt{105}}{66}+\dfrac{11}{66}\)
\(A=\dfrac{55\sqrt{105}+11}{66}\)
\(M=\left(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}\right)\times\dfrac{2022}{2021}\)
\(M=\left(\dfrac{\dfrac{178}{495}}{\dfrac{623}{495}}-\dfrac{\dfrac{17}{60}}{\dfrac{119}{120}}\right)\times\dfrac{2022}{2021}\)
\(M=\left(\dfrac{2}{7}-\dfrac{2}{7}\right)\times\dfrac{2022}{2021}\)
\(M=0\times\dfrac{2022}{2021}\)
M=0
a: Ta có: \(0,\left(3\right)+\dfrac{10}{3}+0,4\left(2\right)\)
\(=\dfrac{1}{3}+\dfrac{10}{3}+\dfrac{4}{9}\)
\(=\dfrac{33}{9}+\dfrac{4}{9}=\dfrac{37}{9}\)
b: Ta có: \(\dfrac{4}{9}+1.2\left(31\right)-0,\left(13\right)\)
\(=\dfrac{4}{9}+\dfrac{1219}{990}-\dfrac{13}{99}\)
\(=\dfrac{440}{990}+\dfrac{1219}{990}-\dfrac{130}{990}\)
\(=\dfrac{139}{90}\)
c: Ta có: \(2,\left(4\right)\cdot\dfrac{3}{11}\)
\(=\dfrac{22}{9}\cdot\dfrac{3}{11}\)
\(=\dfrac{2}{3}\)
d: Ta có: \(-0,\left(3\right)+\dfrac{1}{3}\)
\(=-\dfrac{1}{3}+\dfrac{1}{3}\)
=0
\(a,0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}-\dfrac{1}{6}-\dfrac{4}{35}\\ =\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{2}{5}+\dfrac{5}{7}-\dfrac{1}{6}-\dfrac{4}{35}\\ =\dfrac{5}{6}+\dfrac{39}{35}-\dfrac{1}{6}-\dfrac{4}{35}\\ =\left(\dfrac{5}{6}-\dfrac{1}{6}\right)+\left(\dfrac{39}{35}-\dfrac{4}{35}\right)\\ =\dfrac{2}{3}+1\\ =\dfrac{4}{3}.\)
\(b,\left(3-\dfrac{1}{4}+\dfrac{2}{3}\right)-\left(5+\dfrac{1}{3}-\dfrac{6}{5}\right)-\left(-6-\dfrac{7}{4}+\dfrac{3}{2}\right)\\ =3-\dfrac{1}{4}+\dfrac{2}{3}-5-\dfrac{1}{3}+\dfrac{6}{5}+6+\dfrac{7}{4}-\dfrac{3}{2}\\ =\left(3-5+6\right)+\left(-\dfrac{1}{4}+\dfrac{7}{4}\right)+\left(\dfrac{2}{3}-\dfrac{1}{3}\right)+\left(\dfrac{6}{5}+\dfrac{7}{4}\right)\\ =4-\dfrac{3}{2}+\dfrac{1}{3}+\dfrac{59}{20}\\ =\dfrac{5}{2}+\dfrac{1}{3}+\dfrac{59}{20}\\ =\dfrac{17}{6}+\dfrac{59}{20}\\ =\dfrac{347}{60}.\)
\(c,\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{64}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\\ =\dfrac{1}{3}+\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{1}{64}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\\ =\left(\dfrac{1}{3}-\dfrac{2}{9}\right)+\left(\dfrac{3}{4}-\dfrac{1}{36}\right)+\left(\dfrac{3}{5}+\dfrac{1}{15}\right)+\dfrac{1}{64}\\ =\dfrac{1}{9}+\dfrac{13}{18}+\dfrac{2}{3}+\dfrac{1}{64}\\ =\dfrac{3}{2}+\dfrac{1}{64}\\ =\dfrac{65}{64}.\)
a) \(\dfrac{4}{3}-\left\{\left(6-\dfrac{-11}{6}\right)-\left(\dfrac{2}{9}+\dfrac{5}{3}\right)\right\}\)
\(=\dfrac{4}{3}-\left\{\dfrac{47}{6}-\dfrac{17}{9}\right\}\)
\(=\dfrac{4}{3}-\dfrac{107}{18}\)
\(=\dfrac{-83}{18}\)
b)\(0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}+\dfrac{1}{6}-\dfrac{1}{35}\)
\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{2}{5}+\dfrac{5}{7}+\dfrac{1}{6}-\dfrac{1}{35}\)
\(=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{1}{5}+\dfrac{5}{7}-\dfrac{1}{35}\right)\)
\(=1+\dfrac{11}{35}\)
\(=\dfrac{46}{35}\)
\(a,\dfrac{2}{3}+\dfrac{3}{4}.\left(-\dfrac{4}{9}\right)\)
\(=\dfrac{2}{3}+\left(-\dfrac{1}{3}\right)\)
\(=\dfrac{1}{3}\)
\(b,\left(\dfrac{3}{4}-0,2\right)\left(0,4-\dfrac{4}{5}\right)\)
\(=\left(\dfrac{3}{4}-\dfrac{1}{5}\right)\left(\dfrac{2}{5}-\dfrac{4}{5}\right)\)
\(=\dfrac{11}{20}.\dfrac{-2}{5}\)
\(=-\dfrac{11}{50}\)
Có:
\(0,4-\dfrac{3}{4}.\dfrac{-5}{9}\)
\(=\dfrac{2}{5}-\dfrac{3}{4}.\dfrac{-5}{9}\)
\(=\dfrac{2}{5}-\dfrac{-5}{12}\)
\(=\dfrac{2}{5}+\dfrac{5}{12}=\dfrac{49}{60}\)
Chúc bạn học tốt!
\(0,4-\dfrac{3}{4}.\dfrac{-5}{9}=\dfrac{2}{5}-\dfrac{-5}{12}=\dfrac{2}{5}+\dfrac{5}{12}=\dfrac{24}{60}+\dfrac{25}{60}=\dfrac{49}{60}\)
Mấy cái này dễ lắm nên lần sau bạn tự làm đi nha