Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kéo dài OB cắt đường thẳng a tại D. Tính được ^OAD rồi suy ra ^AOB
máy tính xin hân hạnh đồng hành cùng với lê Kiều Trinh
Ta có: \(\widehat{B_1}+\widehat{B_2}=180^o\)(hai góc kề bù)
suy ra \(\widehat{B_2}+\frac{1}{2}\widehat{B_2}=\frac{3}{2}\widehat{B_2}=180^o\Leftrightarrow\widehat{B_2}=120^o\)
\(\widehat{B_1}=\frac{1}{2}\widehat{B_2}=120^o\div2=60^o\)
Có \(a//b\)nên \(\widehat{B_1}=\widehat{A_1}\)(hai góc so le trong)
suy ra \(\widehat{A_1}=60^o\)
Bài 1:
\(0,0\left(8\right)=\frac{1}{10}\cdot0,\left(8\right)=\frac{1}{10}\cdot0,\left(1\right)\cdot8=\frac{4}{5}\cdot\frac{1}{9}=\frac{4}{45}\)
\(0,1\left(2\right)=0,1+0,0\left(2\right)=\frac{1}{10}+\frac{1}{10}\cdot0,\left(2\right)=\frac{1}{10}+\frac{1}{10}\cdot0,\left(1\right)\cdot2=\frac{1}{10}+\frac{1}{5}\cdot\frac{1}{9}=\frac{1}{10}+\frac{1}{45}=\frac{11}{90}\)
\(0,1\left(23\right)=0,1+0,\left(23\right)=\frac{1}{10}+0,\left(01\right)\cdot23=\frac{1}{10}+\frac{1}{99}\cdot23=\frac{1}{10}+\frac{23}{99}=\frac{329}{990}\)