K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2016

\(x.0,\left(2\right)+0,\left(3\right)=0,\left(77\right)\)

\(\Rightarrow x.\frac{2}{9}+\frac{3}{9}=\frac{7}{9}\)

\(\Rightarrow\frac{2x}{9}=\frac{7}{9}-\frac{3}{9}\)

\(\Rightarrow\frac{2x}{9}=\frac{4}{9}\)

\(\Rightarrow x=2\)

Vậy x = 2

11 tháng 4 2017

a) Phương trình hoành độ giao điểm

1 - x2 = 0 ⇔ x = ±1.

Thể tích cần tìm là :

b) Thể tích cần tìm là :

c) Thể tích cần tìm là :

.



25 tháng 3 2020

a) Hai mặt phẳng cắt nhau, vì 1: 2: (-1) ≠ 2: 3: (-7)

b) Hai mặt phẳng cắt nhau, vì: 1: (-2): 1 ≠ 2: (-1): 4

c) Hai mặt phẳng song song, vì: 1/2=1/2=1/2 ≠ -1/3

d) Hai mạt phẳng cắt nhau, vì: 3: (-2): 3 ≠ 9: (-6): (-9)

e) Hai mặt phẳng trung nhau, vì: 1/10=-1/(-10)=2/20=-4/(-40).

           #rin

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

NV
10 tháng 4 2020

Xét hàm \(f\left(t\right)=\frac{ln\left(a^t+b^t\right)}{t}\) với \(t>0\)

\(f'\left(t\right)=\frac{t.\frac{a^t.lna+b^t.lnb}{a^t+b^t}-ln\left(a^t+b^t\right)}{t^2}=\frac{a^tlna^t-a^tln\left(a^t+b^t\right)+b^tlnb^t-b^tln\left(a^t+b^t\right)}{\left(a^t+b^t\right)t^2}\)

\(=\frac{a^t.\left(lna^t-ln\left(a^t+b^t\right)\right)+b^t\left(lnb^t-ln\left(a^t+b^t\right)\right)}{\left(a^t+b^t\right)t^2}< 0\)

\(\Rightarrow f\left(t\right)\) nghịch biến \(\Leftrightarrow f\left(x\right)< f\left(y\right)\Leftrightarrow x>y>0\)

\(\Leftrightarrow\frac{ln\left(a^x+b^x\right)}{x}< \frac{ln\left(a^y+b^y\right)}{y}\)

\(\Leftrightarrow y.ln\left(a^x+b^x\right)< x.ln\left(a^y+b^y\right)\)

\(\Leftrightarrow ln\left(a^x+b^x\right)^y< ln\left(a^y+b^y\right)^x\)

\(\Leftrightarrow\left(a^x+b^x\right)^y< \left(a^y+b^y\right)^x\)

NV
5 tháng 6 2019

\(f\left(x\right)+2f'\left(x\right)+f''\left(x\right)=x^3+2x^2\)

\(\Leftrightarrow f\left(x\right)+f'\left(x\right)+f'\left(x\right)+f''\left(x\right)=x^3+2x^2\)

\(\Leftrightarrow f\left(x\right)+f'\left(x\right)+\left[f\left(x\right)+f'\left(x\right)\right]'=x^3+2x^2\)

Đặt \(f\left(x\right)+f'\left(x\right)=u\left(x\right)\) ta được:

\(u\left(x\right)+u'\left(x\right)=x^3+2x^2\)

\(\Leftrightarrow e^x.u\left(x\right)+e^x.u'\left(x\right)=e^x\left(x^3+2x^2\right)\)

\(\Leftrightarrow\left[e^x.u\left(x\right)\right]'=e^x\left(x^3+2x^2\right)\)

\(\Rightarrow e^x.u\left(x\right)=\int e^x\left(x^3+2x^2\right)dx=e^x\left(x^3-x^2+2x-2\right)+C\)

\(\Leftrightarrow e^x\left[f\left(x\right)+f'\left(x\right)\right]=e^x\left(x^3-x^2+2x-2\right)+C\)

Thay \(x=0\) vào ta được \(2=-2+C\Rightarrow C=4\)

\(\Rightarrow e^x.f\left(x\right)+e^x.f'\left(x\right)=e^x\left(x^3-x^2+2x-2\right)+4\)

\(\Leftrightarrow\left[e^x.f\left(x\right)\right]'=e^x\left(x^3-x^2+2x-2\right)+4\)

\(\Rightarrow e^x.f\left(x\right)=\int\left[e^x\left(x^3-x^2+2x-2\right)+4\right]dx\)

\(\Rightarrow e^x.f\left(x\right)=e^x\left(x^3-4x^2+10x-12\right)+4x+C_1\)

Thay \(x=0\) vào ta được: \(1=-12+C_1\Rightarrow C_1=13\)

\(\Rightarrow e^x.f\left(x\right)=e^x\left(x^3-4x^2+10x-12\right)+4x+13\)

\(\Rightarrow f\left(x\right)=x^3-4x^2+10x-12+\frac{4x+13}{e^x}\)

\(\Rightarrow\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\left(x^3-4x^2+10x-12\right)dx+\int\limits^1_0\left(4x+13\right).e^{-x}dx\)

Tích phân trước bạn tự tính, tích phân sau cũng đơn giản thôi:

Đặt \(\left\{{}\begin{matrix}u=4x+13\\dv=e^{-x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=4dx\\v=-e^{-x}\end{matrix}\right.\)

\(\Rightarrow I=-\left(4x+13\right).e^{-x}|^1_0+4\int\limits^1_0e^{-x}dx=\frac{-17}{e}+13-4.e^{-x}|^1_0=17-\frac{21}{e}\)

Casio cho kết quả tích phân trước là \(-\frac{97}{12}\)

Vậy \(\int\limits^1_0f\left(x\right)dx=\frac{107}{12}-\frac{21}{e}\)