
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bán kính đường tròn (R) | 3 | 2,5 | 4 |
Độ dài đường tròn(A) | 18,84 | 15,70 | 25,12 |
Diện tích hình tròn(S) | 28,26 | 19,625 | 50,24 |
Số đo của cung tròn(n độ) | 60 | 80 | 45 |
Diện tích hình quạt tròn cung n độ | 4,71 | 4,36 | 6,28 |



Bài 3:
a: ΔOAB cân tại O
mà OH là đường cao
nên OH là phân giác của góc AOB và H là trung điểm của BC
b: OH là phân giác của góc AOB
=>\(\hat{AOH}=\hat{BOH}=\frac12\cdot\hat{AOB}=60^0\)
Xét ΔOHA vuông tại H có cos HOA\(=\frac{OH}{OA}\)
=>\(\frac{OH}{R}=cos60=\frac12\)
=>\(OH=\frac{R}{2}\)
ΔOHA vuông tại H
=>\(HO^2+HA^2=OA^2\)
=>\(HA^2=R^2-\left(\frac{R}{2}\right)^2=R^2-\frac{R^2}{4}=\frac34R^2\)
=>\(HA=\frac{R\sqrt3}{2}\)
H là trung điểm của AB
=>\(AB=2\cdot AH=2\cdot\frac{R\sqrt3}{2}=R\sqrt3\)
Diện tích tam giác OAB là:
\(S_{OAB}=\frac12\cdot OH\cdot AB=\frac12\cdot R\cdot R\sqrt3=\frac{R^2\sqrt3}{2}\)
c: Xét ΔCOA có OC=OA và \(\hat{AOC}=60^0\)
nên ΔCOA đều
=>CA=AC=OC=R
Xét ΔCOB có OC=OB và \(\hat{BOC}=60^0\)
nên ΔBOC đều
=>BO=OC=BC=R
Xét tứ giác OACB có OA=CA=CB=OB
nên OACB là hình thoi
Bài 2:
a: ΔOAB cân tại O
mà OM là đường trung tuyến
nên OM⊥AB tại M
b: ΔOAB vuông tại O
=>\(OA^2+OB^2=AB^2\)
=>\(AB^2=R^2+R^2=2R^2\)
=>\(AB=R\sqrt2\)
ΔOAB vuông tại O có OM là đường trung tuyến
nên \(OM=\frac{AB}{2}=\frac{R\sqrt2}{2}\)
Bài 1:
a: Xét tứ giác BEDC có \(\hat{BEC}=\hat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp đường tròn đường kính BC
=>B,E,D,C cùng thuộc một đường tròn
b: Xét tứ giác ADHE có \(\hat{ADH}+\hat{AEH}=90^0+90^0=180^0\)
nên ADHE là tứ giác nội tiếp đường tròn đường kính AH
=>A,D,E,H cùng thuộc một đường tròn
c: BEDC là tứ giác nội tiếp đường tròn đường kính BC
=>ED<BC
ADHE nội tiếp đường tròn đường kính AH
=>DE<AH

Bài 6:
a: ĐKXĐ: x∉{0;2}
Ta có: \(\frac{1}{x}+\frac{2}{x\left(x-2\right)}=\frac{x+2}{x-2}\)
=>\(\frac{x-2}{x\left(x-2\right)}+\frac{2}{x\left(x-2\right)}=\frac{x\left(x+2\right)}{x\left(x-2\right)}\)
=>\(x-2+2=x\left(x+2\right)\)
=>x(x+2)=x
=>x(x+2)-x=0
=>x(x+2-1)=0
=>x(x+1)=0
=>\(\left[\begin{array}{l}x=0\left(loại\right)\\ x+1=0\end{array}\right.\Rightarrow x+1=0\)
=>x=-1(nhận )
b: ĐKXĐ: y∉{0;-5;5}
Ta có: \(\frac{y+5}{y^2-5y}-\frac{y-5}{2y^2+10y}=\frac{y+25}{2y^2-50}\)
=>\(\frac{y+5}{y\left(y-5\right)}-\frac{y-5}{2y\left(y+5\right)}=\frac{y+25}{2\left(y-5\right)\left(y+5\right)}\)
=>\(\frac{2\left(y+5\right)^2}{2y\left(y+5\right)\left(y-5\right)}-\frac{\left(y-5\right)^2}{2y\left(y+5\right)\left(y-5\right)}=\frac{y\left(y+25\right)}{2y\left(y+5\right)\left(y-5\right)}\)
=>\(2\left(y+5\right)^2-\left(y-5\right)^2=y\left(y+25\right)\)
=>\(2y^2+20y+50-y^2+10y-25=y^2+25y\)
=>\(y^2+30y+25=y^2+25y\)
=>5y=-25
=>y=-5(loại)
Bài 7:
a: ĐKXĐ: x<>1
\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
=>\(\frac{1}{x-1}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{4}{x^2+x+1}\)
=>\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
=>\(x^2+x+1+2x^2-5=4\left(x-1\right)\)
=>\(3x^2+x-4=4x-4\)
=>\(3x^2-3x=0\)
=>3x(x-1)=0
=>x(x-1)=0
=>\(\left[\begin{array}{l}x=0\left(nhận\right)\\ x=1\left(loại\right)\end{array}\right.\)
b: ĐKXĐ: x<>2
Ta có: \(\frac{2x^2}{x^3-8}+\frac{x+1}{x^2+2x+4}=\frac{3}{x-2}\)
=>\(\frac{2x^2}{\left(x-2\right)\left(x^2+2x+4\right)}+\frac{\left(x+1\right)}{x^2+2x+4}=\frac{3}{x-2}\)
=>\(\frac{2x^2}{\left(x-2\right)\cdot\left(x^2+2x+4\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\)
=>\(2x^2+\left(x+1\right)\left(x-2\right)=3\left(x^2+2x+4\right)\)
=>\(2x^2+x^2-x-2=3x^2+6x+12\)
=>6x+12=-x-2
=>7x=-14
=>x=-2(nhận)
c: ĐKXĐ: x∉{1;4}
Ta có: \(\frac{2x+1}{x^2-5x+4}+\frac{5}{x-1}=\frac{2}{x-4}\)
=>\(\frac{2x+1}{\left(x-1\right)\left(x-4\right)}+\frac{5}{x-1}=\frac{2}{x-4}\)
=>\(\frac{2x+1}{\left(x-1\right)\left(x-4\right)}+\frac{5\left(x-4\right)}{\left(x-1\right)\left(x-4\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x-4\right)}\)
=>2x+1+5(x-4)=2(x-1)
=>2x+1+5x-20=2x-2
=>7x-19=2x-2
=>5x=17
=>\(x=\frac{17}{5}\) (nhận)

Bài 1:
a: \(\left(x-4\right)^3=\left(x+4\right)\left(x^2-x-16\right)\)
=>\(x^3-12x^2+48x-64=x^3-x^2-16x+4x^2-4x-64\)
=>\(x^3-12x^2+48x-64=x^3+3x^2-20x-64\)
=>\(-15x^2+68x=0\)
=>x(-15x+68)=0
=>\(\left[\begin{array}{l}x=0\\ -15x+68=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=\frac{68}{15}\end{array}\right.\)
b: ĐKXĐ: x∉{0;-2}
Ta có: \(\frac{x+2}{x}=\frac{x^2+5x+4}{x^2+2x}+\frac{x}{x+2}\)
=>\(\frac{x+2}{x}=\frac{x^2+5x+4}{x\left(x+2\right)}+\frac{x}{x+2}\)
=>\(\frac{\left(x+2\right)^2}{x\left(x+2\right)}=\frac{x^2+5x+4}{x\left(x+2\right)}+\frac{x^2}{x\left(x+2\right)}\)
=>\(x^2+5x+4+x^2=\left(x+2\right)^2=x^2+4x+4\)
=>\(2x^2+5x+4-x^2-4x-4=0\)
=>\(x^2+x=0\)
=>x(x+1)=0
=>\(\left[\begin{array}{l}x=0\\ x+1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\left(loại\right)\\ x=-1\left(nhận\right)\end{array}\right.\)
c: ĐKXĐ: x∉{2;-2}
Ta có: \(\frac{x+1}{x-2}-\frac{5}{x+2}=\frac{12}{x^2-4}+1\)
=>\(\frac{\left(x+1\right)}{x-2}-\frac{5}{x+2}=\frac{12}{\left(x-2\right)\left(x+2\right)}-1\)
=>\(\frac{\left(x+1\right)\left(x+2\right)-5\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{12-\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
=>\(\left(x+1\right)\left(x+2\right)-5\left(x-2\right)=12-\left(x-2\right)\left(x+2\right)\)
=>\(x^2+3x+2-5x+10=12-\left(x^2-4\right)\)
=>\(x^2-2x+12=12-x^2+4\)
=>\(x^2-2x+12=-x^2+16\)
=>\(2x^2-2x-4=0\)
=>\(x^2-x-2=0\)
=>(x-2)(x+1)=0
=>\(\left[\begin{array}{l}x-2=0\\ x+1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\left(loại\right)\\ x=-1\left(nhận\right)\end{array}\right.\)
Bài 2:
Gọi số học sinh giỏi là x(bạn)
(Điều kiện: x∈N*)
Số học sinh khá là \(\frac52x\) (bạn)
Số học sinh giỏi sau khi thêm 10 bạn là x+10(bạn)
Số học sinh khá sau khi bớt đi 6 bạn là \(\frac52x-6\) (bạn)
Số học sinh khá sẽ gấp 2 lần số học sinh giỏi nên ta có:
\(\frac52x-6=2\left(x+10\right)\)
=>2,5x-6=2x+20
=>0,5x=26
=>x=52(nhận)
vậy: Số học sinh giỏi là 52 bạn

a: \(\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Rightarrow\begin{cases}6x-4y=14\\ -6x+4y=-9\end{cases}\)
=>\(\begin{cases}6x-4y-6x+4y=14-9=5\\ 3x-2y=7\end{cases}\Rightarrow\begin{cases}0y=5\\ 3x-2y=7\end{cases}\)
=>Hệ vô nghiệm
b: \(\begin{cases}2x+4y=9\\ -3x-6y=-27\end{cases}\Rightarrow\begin{cases}6x+8y=18\\ -6x-12y=-54\end{cases}\)
=>\(\begin{cases}6x+8y-6x-12y=18-54=-36\\ 2x+4y=9\end{cases}\Rightarrow\begin{cases}-4y=-36\\ 2x=9-4y\end{cases}\)
=>\(\begin{cases}y=9\\ 2x=9-4\cdot9=9-36=-27\end{cases}\Rightarrow\begin{cases}y=9\\ x=-\frac{27}{2}\end{cases}\)
c: \(\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Rightarrow\begin{cases}10x+2y=6\\ 4x-2y=9\end{cases}\)
=>\(\begin{cases}10x+2y+4x-2y=6+9\\ 5x+y=3\end{cases}\Rightarrow\begin{cases}14x=15\\ y=3-5x\end{cases}\Rightarrow\begin{cases}x=\frac{15}{14}\\ y=3-5\cdot\frac{15}{14}=3-\frac{75}{14}=\frac{42}{14}-\frac{75}{14}=\frac{-33}{14}\end{cases}\)
d: \(\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Rightarrow\begin{cases}4x-6y=-10\\ -4x+6y=10\end{cases}\)
=>\(\begin{cases}4x-6y-4x+6y=-10+10=0\\ 2x-3y=-5\end{cases}\Rightarrow\begin{cases}0y=0\\ 2x=3y-5\end{cases}\)
=>\(\begin{cases}y\in R\\ x=\frac{3y-5}{2}\end{cases}\)
\(a.\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Leftrightarrow\begin{cases}6x-4y=7\left(1\right)\\ -6x+4y=-9\left(2\right)\end{cases}\)
lấy (1) + (2) ta được:
0x + 0y = -2
vậy phương trình trên vô nghiệm
\(b.\begin{cases}2x-4y=9\\ -3x-6y=-27\end{cases}\Leftrightarrow\begin{cases}6x-12y=27\left(1\right)\\ -6x-12y=-54\left(2\right)\end{cases}\)
lấy (1) - (2) ta được:
12x = 81
⇒ x = 81 : 12 = 6,75
thay x = 6,75 vào (1) ta được:
\(6\cdot6,75-12y=27\)
40,5 - 12y = 27
12y = 40,5 - 27
12y = 13,5
y = 13,5 : 12 = 1,125
kết luận: (x; y) = (6,75; 1,125)
\(c.\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Leftrightarrow\begin{cases}10x+2y=6\left(1\right)\\ 4x-2y=9\left(2\right)\end{cases}\)
lấy (1) + (2) ta được:
14x = 15
x = 15 : 14 = \(\frac{15}{14}\) (3)
thay (3) vào (1) ta được:
\(10\cdot\frac{15}{14}+2y=6\)
\(\frac{75}{7}+2y=6\)
\(2y=6-\frac{75}{7}\)
\(2y=-\frac{33}{7}\)
\(y=-\frac{33}{7}:2=-\frac{33}{7}\cdot\frac12=-\frac{33}{14}\)
kết luận: \(\left(x;y\right)=\left(\frac{15}{14};-\frac{33}{14}\right)\)
\(d.\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Leftrightarrow\begin{cases}4x-6y=-10\left(1\right)\\ -4x+6y=10\left(2\right)\end{cases}\)
lấy (1) + (2) ta được:
0x + 0y = 0
vậy hệ có vô số nghiệm

a: \(\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Rightarrow\begin{cases}6x-4y=14\\ -6x+4y=-9\end{cases}\)
=>\(\begin{cases}6x-4y-6x+4y=14-9=5\\ 3x-2y=7\end{cases}\Rightarrow\begin{cases}0y=5\\ 3x-2y=7\end{cases}\)
=>Hệ vô nghiệm
b: \(\begin{cases}2x+4y=9\\ -3x-6y=-27\end{cases}\Rightarrow\begin{cases}6x+8y=18\\ -6x-12y=-54\end{cases}\)
=>\(\begin{cases}6x+8y-6x-12y=18-54=-36\\ 2x+4y=9\end{cases}\Rightarrow\begin{cases}-4y=-36\\ 2x=9-4y\end{cases}\)
=>\(\begin{cases}y=9\\ 2x=9-4\cdot9=9-36=-27\end{cases}\Rightarrow\begin{cases}y=9\\ x=-\frac{27}{2}\end{cases}\)
c: \(\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Rightarrow\begin{cases}10x+2y=6\\ 4x-2y=9\end{cases}\)
=>\(\begin{cases}10x+2y+4x-2y=6+9\\ 5x+y=3\end{cases}\Rightarrow\begin{cases}14x=15\\ y=3-5x\end{cases}\Rightarrow\begin{cases}x=\frac{15}{14}\\ y=3-5\cdot\frac{15}{14}=3-\frac{75}{14}=\frac{42}{14}-\frac{75}{14}=\frac{-33}{14}\end{cases}\)
d: \(\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Rightarrow\begin{cases}4x-6y=-10\\ -4x+6y=10\end{cases}\)
=>\(\begin{cases}4x-6y-4x+6y=-10+10=0\\ 2x-3y=-5\end{cases}\Rightarrow\begin{cases}0y=0\\ 2x=3y-5\end{cases}\)
=>\(\begin{cases}y\in R\\ x=\frac{3y-5}{2}\end{cases}\)
Xét (O) có \(\hat{MAB}\) là góc nội tiếp chắn cung MB
nên \(\hat{MOB}=2\cdot\hat{MAB}=2\cdot45^0=90^0\)
=>MO⊥AB tại O
=>\(\hat{MOA}=90^0\)
Diện tích hình quạt tròn AOM là:
\(S_{q\left(AOM\right)}=\pi\cdot R^2\cdot\frac{n}{360}=\pi\cdot5^2\cdot\frac{90}{360}=\frac{25\pi}{4}\)