K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: \(2x-x^2\ge0\)

=>\(x^2-2x\le0\)

=>x(x-2)<=0

=>0<=x<=2

0<=x<=2 nên 0>=-x>=-2

=>0>=-x+1>=-2+1

=>0>=-x+1>=-1

\(y=\sqrt{2x-x^2}-x\)

=>\(y^{\prime}=\frac{\left(2x-x^2\right)^{\prime}}{2\cdot\sqrt{2x-x^2}}-1=\frac{2-2x}{2\cdot\sqrt{2x-x^2}}-1=\frac{1-x}{\sqrt{2x-x^2}}-1\)

Đặt y'<0

=>\(\frac{1-x}{\sqrt{2x-x^2}}-1<0\) (1)

=>\(\frac{1-x}{\sqrt{2x-x^2}}<1\)

TH1: 1-x<0

=>x>1

=>1<x<=2

Khi đó, ta sẽ có:\(\frac{1-x}{\sqrt{2x-x^2}}<0\) <1

=>(1) luôn đúng với mọi x>1

Kết hợp ĐKXĐ, ta được: 1<x<=2(2)

TH2: 1-x>=0

=>x<=1

(1) sẽ tương đương với: \(\frac{\left(1-x\right)^2}{2x-x^2}<1\)

=>\(\left(1-x\right)^2<2x-x^2\)

=>\(x^2-2x+1-2x+x^2\le0\)

=>\(2x^2-4x+1\le0\)

=>\(x^2-2x+\frac12\le0\)

=>\(x^2-2x+1-\frac12\le0\)

=>\(\left(x-1\right)^2\le\frac12\)

=>\(-\frac{\sqrt2}{2}\le x-1\le\frac{\sqrt2}{2}\)

=>\(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)

Kết hợp ĐKXĐ, ta được: \(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)

=>0,29<x<1,71(3)

Từ (2),(3) suy ra Hàm số nghịch biến trên khoảng (1;2)

=>Chọn C

ĐKXĐ: \(2x-x^2\ge0\)

=>\(x^2-2x\le0\)

=>x(x-2)<=0

=>0<=x<=2

0<=x<=2 nên 0>=-x>=-2

=>0>=-x+1>=-2+1

=>0>=-x+1>=-1

\(y=\sqrt{2x-x^2}-x\)

=>\(y^{\prime}=\frac{\left(2x-x^2\right)^{\prime}}{2\cdot\sqrt{2x-x^2}}-1=\frac{2-2x}{2\cdot\sqrt{2x-x^2}}-1=\frac{1-x}{\sqrt{2x-x^2}}-1\)

Đặt y'<0

=>\(\frac{1-x}{\sqrt{2x-x^2}}-1<0\) (1)

=>\(\frac{1-x}{\sqrt{2x-x^2}}<1\)

TH1: 1-x<0

=>x>1

=>1<x<=2

Khi đó, ta sẽ có:\(\frac{1-x}{\sqrt{2x-x^2}}<0\) <1

=>(1) luôn đúng với mọi x>1

Kết hợp ĐKXĐ, ta được: 1<x<=2(2)

TH2: 1-x>=0

=>x<=1

(1) sẽ tương đương với: \(\frac{\left(1-x\right)^2}{2x-x^2}<1\)

=>\(\left(1-x\right)^2<2x-x^2\)

=>\(x^2-2x+1-2x+x^2\le0\)

=>\(2x^2-4x+1\le0\)

=>\(x^2-2x+\frac12\le0\)

=>\(x^2-2x+1-\frac12\le0\)

=>\(\left(x-1\right)^2\le\frac12\)

=>\(-\frac{\sqrt2}{2}\le x-1\le\frac{\sqrt2}{2}\)

=>\(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)

Kết hợp ĐKXĐ, ta được: \(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)

=>0,29<x<1,71(3)

Từ (2),(3) suy ra Hàm số nghịch biến trên khoảng (1;2)

=>Chọn C

17 tháng 9

ôi trời nhìn khó vậy

jubyuibgi

14 tháng 9

Mình nhìn rõ biểu thức trong ảnh là:


$$

V = \sqrt[3]{\,(x^2 - 4)^2\,}.

$$


---


### Phân tích:


* Đây là căn bậc 3 của $(x^2 - 4)^2$.

* Vì căn bậc 3 **luôn xác định với mọi số thực**, nên biểu thức có **tập xác định** là $\mathbb{R}$ (tất cả số thực).


---


### Biến đổi đơn giản hơn:


$$

V = \sqrt[3]{(x^2 - 4)^2} = \big|x^2 - 4\big|^{\tfrac{2}{3}}.

$$


---


✅ Kết luận:


* Tập xác định: $D = \mathbb{R}$.

* Dạng đơn giản: $V = |x^2 - 4|^{2/3}$.





c: \(y=-x^2+2x+3\)

=>\(y^{\prime}=-2x+2\)

Đặt y'<0

=>-2x+2<0

=>-2x<-2

=>x>1

=>Hàm số nghịch biến trên (1;+∞)

Đặt y'>0

=>-2x+2>0

=>-2x>-2

=>x<1

=>Hàm số đồng biến trên (-∞;1)

d: \(y=\frac13x^3+3x^2+5x+2\)

=>\(y^{\prime}=\frac13\cdot3x^2+3\cdot2x+5=x^2+6x+5=\left(x+1\right)\left(x+5\right)\)

Đặt y'>0

=>(x+1)(x+5)>0

=>\(\left[\begin{array}{l}x>-1\\ x<-5\end{array}\right.\)

=>Hàm số đồng biến trên các khoảng (-1;+∞) và (-∞;-5)

Đặt y'<0

=>(x+1)(x+5)<0

=>-5<x<-1

=>Hàm số nghịch biến trên khoảng (-5;-1)