
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Xét tứ giác SAOB có \(\hat{SAO}+\hat{SBO}=90^0+90^0=180^0\)
nên SAOB là tứ giác nội tiếp đường tròn đường kính SO
b: ΔOMN cân tại O
mà OI là đường trung tuyến
nên OI⊥MN tại I
Ta có: \(\hat{OIS}=\hat{OAS}=\hat{OBS}=90^0\)
=>O,I,A,S,B cùng thuộc đường tròn đường kính OS
c: Xét (O) có
SA,SB là các tiếp tuyến
Do đó: SA=SB
=>S nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra SO là đường trung trực của AB
=>SO⊥AB tại H và H là trung điểm của AB
Xét ΔSAO vuông tại A có AH là đường cao
nên \(SH\cdot SO=SA^2\)
d: Xét (O) có
\(\hat{SAM}\) là góc tạo bởi tiếp tuyến AS và dây cung AM
\(\hat{ANM}\) là góc nội tiếp chắn cung AM
Do đó: \(\hat{SAM}=\hat{ANM}\)
Xét ΔSAM và ΔSNA có
\(\hat{SAM}=\hat{SNA}\)
góc ASM chung
Do đó: ΔSAM~ΔSNA
=>\(\frac{SA}{SM}=\frac{SN}{SA}\)
=>\(SA^2=SM\cdot SN\)

Gọi (d): y=ax+b(a<>0) là phương trình đường thẳng AB
Thay x=3 và y=4 vào y=ax+b, ta được:
\(a\cdot3+b=4\)
=>3a+b=4(1)
Thay x=5 và y=2 vào y=ax+b, ta được:
\(a\cdot5+b=2\)
=>5a+b=2(2)
Từ (1),(2) ta có hệ phương trình: \(\begin{cases}3a+b=4\\ 5a+b=2\end{cases}\Rightarrow\begin{cases}3a+b-5a-b=4-2=2\\ 3a+b=4\end{cases}\)
=>\(\begin{cases}-2a=2\\ 3a+b=4\end{cases}\Rightarrow\begin{cases}a=-1\\ b=4-3a=4-3\cdot\left(-1\right)=7\end{cases}\)
Vậy: AB: y=-x+7

giao điểm của d1 và d2 là nghiệm của phương trình:
\(\begin{cases}5x-17y=8\\ 15x+7y=82\end{cases}\Rightarrow\begin{cases}x=5\\ y=1\end{cases}\)
⇒ A (5; 1)
để 3 đường thẳng này đồng quy thì d3 đi qua A (5;1)
ta có: \(\left(2m-1\right)x-2my=m+2\)
\(\left(2m-1\right)\cdot5-2m\cdot1=m+2\)
10m - 5 - 2m = m + 2
10m - 2m - m = 5 + 2
7m = 7
⇒ m = 1
vậy m = 1 thì 3 đường thẳng này đồng quy

Câu 12: Để hệ vô nghiệm thì \(\frac{m^2}{3}=\frac31<>\frac{m}{1}\)
=>\(\begin{cases}m^2=9\\ m<>3\end{cases}\Rightarrow m=-3\)
Câu 11: x+2y=1
=>x=1-2y=1+1=2
\(\frac12\cdot x_0^2-2\cdot y_0=\frac12\cdot2^2-2\cdot\frac12=2-1=1\)
Câu 10: \(\begin{cases}x+2y=5\\ x-y=-1\end{cases}\Rightarrow\begin{cases}x+2y-x+y=5+1=6\\ x+2y=5\end{cases}\)
=>\(\begin{cases}3y=6\\ x=5-2y\end{cases}\Rightarrow\begin{cases}y=2\\ x=5-2\cdot2=1\end{cases}\)
\(3\cdot x_0^{2020}+2\cdot y_0\)
\(=3\cdot1^{2020}+2\cdot2=3+4=7\)
Câu 9: Để hệ phương trình \(\begin{cases}m^2x+y=3m\\ -4x-y=6\end{cases}\) vô nghiệm thì
\(\frac{m^2}{-4}=\frac{1}{-1}<>\frac{3m}{6}\)
=>\(\begin{cases}m^2=4\\ 3m<>-6\end{cases}\Rightarrow\begin{cases}m\in\left\lbrace2;-2\right\rbrace\\ m<>-2\end{cases}\)
=>m=2
Để hệ phương trình \(\begin{cases}\left(2-a\right)x-y=-2\\ ax-y=6\end{cases}\) vô nghiệm thì \(\frac{2-a}{a}=\frac{-1}{-1}<>-\frac26\)
=>\(\frac{2-a}{a}=1\)
=>2-a=a
=>a=1

Ta có: \(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)
\(=\frac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)
Ta có: \(P=\left(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\right):\frac{4x}{\left(x-1\right)^2}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\cdot\frac{\left(x-1\right)^2}{4x}\)
\(=\frac{1}{2\sqrt{x}}\cdot\left(\sqrt{x}-1\right)^2\cdot\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)

Olm chào em, với câu hỏi này em cần đăng kèm cả hình, có như vậy, thầy cô mới có thể hỗ trợ em được tốt nhất, em nhé.

ĐKXĐ: x∉{2;-1;-2}
Ta có: \(\frac{3}{x^2-x-2}+\frac{3}{x^2+3x+2}=\frac{3}{x^2+4}\)
=>\(\frac{1}{x^2-x-2}+\frac{1}{x^2+3x+2}=\frac{1}{x^2+4}\)
=>\(\frac{1}{\left(x-2\right)\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{1}{x^2+4}\)
=>\(\frac{x+2+x-2}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}=\frac{1}{x^2+4}\)
=>\(\frac{2x}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}=\frac{1}{x^2+4}\)
=>\(2x\left(x^2+4\right)=\left(x-1\right)\left(x^2-4\right)\)
=>\(2x^3+8x=x^3-4x-x^2+4\)
=>\(x^3+x^2+12x-4=0\)
=>x≃0,32(nhận)
Gọi (d): y = ax + b (a ≠ 0) là phương trình đường thẳng AB
Do (d) đi qua A nên thay tọa độ điểm A(3; 4) vào (d) ta được:
3a + b = 4
b = 4 - 3a (1)
Do (d) đi qua điểm B nên thay tọa độ điểm B(5; 2) vào (d) ta được:
5a + b = 2 (2)
Thế (1) vào (2) ta được:
5a + 4 - 3a = 2
2a = 2 - 4
2a = -2
a = -2 : 2
a = -1
Thế a = -1 vào (1) ta được:
b = 4 - 3.(-1) = 7
Vậy phương trình đường thẳng AB là:
(d): y = -x + 7