K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9

Gọi (d): y = ax + b (a ≠ 0) là phương trình đường thẳng AB

Do (d) đi qua A nên thay tọa độ điểm A(3; 4) vào (d) ta được:

3a + b = 4

b = 4 - 3a (1)

Do (d) đi qua điểm B nên thay tọa độ điểm B(5; 2) vào (d) ta được:

5a + b = 2 (2)

Thế (1) vào (2) ta được:

5a + 4 - 3a = 2

2a = 2 - 4

2a = -2

a = -2 : 2

a = -1

Thế a = -1 vào (1) ta được:

b = 4 - 3.(-1) = 7

Vậy phương trình đường thẳng AB là:

(d): y = -x + 7

a: Xét tứ giác SAOB có \(\hat{SAO}+\hat{SBO}=90^0+90^0=180^0\)

nên SAOB là tứ giác nội tiếp đường tròn đường kính SO

b: ΔOMN cân tại O

mà OI là đường trung tuyến

nên OI⊥MN tại I

Ta có: \(\hat{OIS}=\hat{OAS}=\hat{OBS}=90^0\)

=>O,I,A,S,B cùng thuộc đường tròn đường kính OS
c: Xét (O) có

SA,SB là các tiếp tuyến

Do đó: SA=SB

=>S nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra SO là đường trung trực của AB

=>SO⊥AB tại H và H là trung điểm của AB

Xét ΔSAO vuông tại A có AH là đường cao

nên \(SH\cdot SO=SA^2\)

d: Xét (O) có

\(\hat{SAM}\) là góc tạo bởi tiếp tuyến AS và dây cung AM

\(\hat{ANM}\) là góc nội tiếp chắn cung AM

Do đó: \(\hat{SAM}=\hat{ANM}\)

Xét ΔSAM và ΔSNA có

\(\hat{SAM}=\hat{SNA}\)

góc ASM chung

Do đó: ΔSAM~ΔSNA

=>\(\frac{SA}{SM}=\frac{SN}{SA}\)

=>\(SA^2=SM\cdot SN\)

Gọi (d): y=ax+b(a<>0) là phương trình đường thẳng AB

Thay x=3 và y=4 vào y=ax+b, ta được:

\(a\cdot3+b=4\)

=>3a+b=4(1)

Thay x=5 và y=2 vào y=ax+b, ta được:

\(a\cdot5+b=2\)

=>5a+b=2(2)

Từ (1),(2) ta có hệ phương trình: \(\begin{cases}3a+b=4\\ 5a+b=2\end{cases}\Rightarrow\begin{cases}3a+b-5a-b=4-2=2\\ 3a+b=4\end{cases}\)

=>\(\begin{cases}-2a=2\\ 3a+b=4\end{cases}\Rightarrow\begin{cases}a=-1\\ b=4-3a=4-3\cdot\left(-1\right)=7\end{cases}\)

Vậy: AB: y=-x+7

S
16 tháng 9

giao điểm của d1 và d2 là nghiệm của phương trình:

\(\begin{cases}5x-17y=8\\ 15x+7y=82\end{cases}\Rightarrow\begin{cases}x=5\\ y=1\end{cases}\)

⇒ A (5; 1)

để 3 đường thẳng này đồng quy thì d3 đi qua A (5;1)

ta có: \(\left(2m-1\right)x-2my=m+2\)

\(\left(2m-1\right)\cdot5-2m\cdot1=m+2\)

10m - 5 - 2m = m + 2

10m - 2m - m = 5 + 2

7m = 7

⇒ m = 1

vậy m = 1 thì 3 đường thẳng này đồng quy

Câu 12: Để hệ vô nghiệm thì \(\frac{m^2}{3}=\frac31<>\frac{m}{1}\)

=>\(\begin{cases}m^2=9\\ m<>3\end{cases}\Rightarrow m=-3\)

Câu 11: x+2y=1

=>x=1-2y=1+1=2

\(\frac12\cdot x_0^2-2\cdot y_0=\frac12\cdot2^2-2\cdot\frac12=2-1=1\)

Câu 10: \(\begin{cases}x+2y=5\\ x-y=-1\end{cases}\Rightarrow\begin{cases}x+2y-x+y=5+1=6\\ x+2y=5\end{cases}\)

=>\(\begin{cases}3y=6\\ x=5-2y\end{cases}\Rightarrow\begin{cases}y=2\\ x=5-2\cdot2=1\end{cases}\)

\(3\cdot x_0^{2020}+2\cdot y_0\)

\(=3\cdot1^{2020}+2\cdot2=3+4=7\)

Câu 9: Để hệ phương trình \(\begin{cases}m^2x+y=3m\\ -4x-y=6\end{cases}\) vô nghiệm thì

\(\frac{m^2}{-4}=\frac{1}{-1}<>\frac{3m}{6}\)

=>\(\begin{cases}m^2=4\\ 3m<>-6\end{cases}\Rightarrow\begin{cases}m\in\left\lbrace2;-2\right\rbrace\\ m<>-2\end{cases}\)

=>m=2

Để hệ phương trình \(\begin{cases}\left(2-a\right)x-y=-2\\ ax-y=6\end{cases}\) vô nghiệm thì \(\frac{2-a}{a}=\frac{-1}{-1}<>-\frac26\)

=>\(\frac{2-a}{a}=1\)

=>2-a=a

=>a=1


13 tháng 9

helpppp

Ta có: \(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\)

\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)^2}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)

Ta có: \(P=\left(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\right):\frac{4x}{\left(x-1\right)^2}\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\cdot\frac{\left(x-1\right)^2}{4x}\)

\(=\frac{1}{2\sqrt{x}}\cdot\left(\sqrt{x}-1\right)^2\cdot\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)

QT
Quoc Tran Anh Le
Giáo viên
4 tháng 9

9 tháng 9

Olm chào em, với câu hỏi này em cần đăng kèm cả hình, có như vậy, thầy cô mới có thể hỗ trợ em được tốt nhất, em nhé.

ĐKXĐ: x∉{2;-1;-2}

Ta có: \(\frac{3}{x^2-x-2}+\frac{3}{x^2+3x+2}=\frac{3}{x^2+4}\)

=>\(\frac{1}{x^2-x-2}+\frac{1}{x^2+3x+2}=\frac{1}{x^2+4}\)

=>\(\frac{1}{\left(x-2\right)\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{1}{x^2+4}\)

=>\(\frac{x+2+x-2}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}=\frac{1}{x^2+4}\)

=>\(\frac{2x}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}=\frac{1}{x^2+4}\)

=>\(2x\left(x^2+4\right)=\left(x-1\right)\left(x^2-4\right)\)

=>\(2x^3+8x=x^3-4x-x^2+4\)

=>\(x^3+x^2+12x-4=0\)

=>x≃0,32(nhận)