
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a:Vẽ lại hình:
ta có: a⊥x
b⊥x
Do đó: a//b
b: Ta có: a//b
=>\(\hat{A_1}+\hat{B_4}=180^0\) (hai góc trong cùng phía)
=>\(\hat{B_4}=180^0-70^0=110^0\)
ta có: \(\hat{B_4}=\hat{B_2}\) (hai góc đối đỉnh)
mà \(\hat{B_4}=110^0\)
nên \(\hat{B_2}=110^0\)

Bài 3:
a: \(\frac{31}{15}>1;\frac{15}{31}<1\)
Do đó: \(\frac{31}{15}>\frac{15}{31}\)
=>\(\left(\frac{31}{15}\right)^{11}>\left(\frac{15}{31}\right)^{11}\)
b: \(\frac89<1\)
=>\(\left(\frac89\right)^{23}>\left(\frac89\right)^{25}\)
=>\(-\left(\frac89\right)^{23}<-\left(\frac89\right)^{25}\)
=>\(\left(-\frac89\right)^{23}<\left(-\frac89\right)^{25}\)
c: \(27^{40}=\left(27^2\right)^{20}=729^{20}\)
\(64^{60}=\left(64^3\right)^{20}=262144^{20}\)
mà 729<262144
nên \(27^{40}<64^{60}\)
Bài 2:
a: \(A=\frac{1}{10}-\frac{1}{10\cdot9}-\frac{1}{9\cdot8}-\cdots-\frac{1}{3\cdot2}-\frac{1}{2\cdot1}\)
\(=\frac{1}{10}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{9\cdot10}\right)\)
\(=\frac{1}{10}-\left(1-\frac12+\frac12-\frac13+\cdots+\frac19-\frac{1}{10}\right)\)
\(=\frac{1}{10}-\left(1-\frac{1}{10}\right)=\frac{1}{10}-\frac{9}{10}=-\frac{8}{10}=-\frac45\)
b: \(B=\frac13+\frac{1}{3^2}+\cdots+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)
=>\(3B=1+\frac13+\cdots+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)
=>\(3B-B=1+\frac13+\cdots+\frac{1}{3^{98}}+\frac{1}{3^{99}}-\frac13-\frac{1}{3^2}-\cdots-\frac{1}{3^{100}}\)
=>\(2B=1-\frac{1}{3^{100}}=\frac{3^{100}-1}{3^{100}}\)
=>\(B=\frac{3^{100}-1}{2\cdot3^{100}}\)

1: Ta có: \(\hat{xOy}+\hat{xOn}=180^0\) (hai góc kề bù)
=>\(\hat{xOn}=180^0-120^0=60^0\)
Ta có: \(\hat{xOy}=\hat{mOn}\) (hai góc đối đỉnh)
mà \(\hat{xOy}=120^0\)
nên \(\hat{mOn}=120^0\)
Ta có: \(\hat{xOn}=\hat{yOm}\) (hai góc đối đỉnh)
mà \(\hat{xOn}=60^0\)
nên \(\hat{yOm}=60^0\)
2:
a: \(\hat{x^{\prime}AB}=\hat{yBA}\left(=70^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên xx'//yy'
b: Ta có: \(\hat{xCD}=\hat{mCA}\) (hai góc đối đỉnh)
mà \(\hat{mCA}=70^0\)
nên \(\hat{xCD}=70^0\)
Ta có: xx'//yy'
=>\(\hat{xCD}+\hat{yDC}=180^0\)
=>\(\hat{yDC}=180^0-70^0=110^0\)
a: ta có: m⊥d
n⊥d
Do đó: m//n
b: Ta có: m//n
=>\(\hat{A_3}+\hat{B_1}=180^0\) (hai góc trong cùng phía)
=>\(\frac12\cdot\hat{B_1}+\hat{B_1}=180^0\)
=>\(\frac32\cdot\hat{B_1}=180^0\)
=>\(\hat{B_1}=180^0:\frac32=120^0\)
=>\(\hat{A_3}=120^0\cdot\frac12=60^0\)
Ta có: \(\hat{B_1}+\hat{B_2}=180^0\) (hai góc kề bù)
=>\(\hat{B_2}=180^0-120^0=60^0\)
c: Qua E, kẻ tia EF nằm giữa hai tia EA và EC sao cho EF//Am//Cn
Ta có: EF//Am
=>\(\hat{AEF}=\hat{EAm}=60^0\)
Ta có: EF//CB
=>\(\hat{FEC}=\hat{ECB}=80^0\)
Ta có: tia EF nằm giữa hai tia EA và EC
=>\(\hat{AEC}=\hat{AEF}+\hat{CEF}=60^0+80^0=140^0\)