
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ĐKXĐ: x∉{2;-1;-2}
Ta có: \(\frac{3}{x^2-x-2}+\frac{3}{x^2+3x+2}=\frac{3}{x^2+4}\)
=>\(\frac{1}{x^2-x-2}+\frac{1}{x^2+3x+2}=\frac{1}{x^2+4}\)
=>\(\frac{1}{\left(x-2\right)\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{1}{x^2+4}\)
=>\(\frac{x+2+x-2}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}=\frac{1}{x^2+4}\)
=>\(\frac{2x}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}=\frac{1}{x^2+4}\)
=>\(2x\left(x^2+4\right)=\left(x-1\right)\left(x^2-4\right)\)
=>\(2x^3+8x=x^3-4x-x^2+4\)
=>\(x^3+x^2+12x-4=0\)
=>x≃0,32(nhận)


Câu 12: Để hệ vô nghiệm thì \(\frac{m^2}{3}=\frac31<>\frac{m}{1}\)
=>\(\begin{cases}m^2=9\\ m<>3\end{cases}\Rightarrow m=-3\)
Câu 11: x+2y=1
=>x=1-2y=1+1=2
\(\frac12\cdot x_0^2-2\cdot y_0=\frac12\cdot2^2-2\cdot\frac12=2-1=1\)
Câu 10: \(\begin{cases}x+2y=5\\ x-y=-1\end{cases}\Rightarrow\begin{cases}x+2y-x+y=5+1=6\\ x+2y=5\end{cases}\)
=>\(\begin{cases}3y=6\\ x=5-2y\end{cases}\Rightarrow\begin{cases}y=2\\ x=5-2\cdot2=1\end{cases}\)
\(3\cdot x_0^{2020}+2\cdot y_0\)
\(=3\cdot1^{2020}+2\cdot2=3+4=7\)
Câu 9: Để hệ phương trình \(\begin{cases}m^2x+y=3m\\ -4x-y=6\end{cases}\) vô nghiệm thì
\(\frac{m^2}{-4}=\frac{1}{-1}<>\frac{3m}{6}\)
=>\(\begin{cases}m^2=4\\ 3m<>-6\end{cases}\Rightarrow\begin{cases}m\in\left\lbrace2;-2\right\rbrace\\ m<>-2\end{cases}\)
=>m=2
Để hệ phương trình \(\begin{cases}\left(2-a\right)x-y=-2\\ ax-y=6\end{cases}\) vô nghiệm thì \(\frac{2-a}{a}=\frac{-1}{-1}<>-\frac26\)
=>\(\frac{2-a}{a}=1\)
=>2-a=a
=>a=1

Olm chào em, với câu hỏi này em cần đăng kèm cả hình, có như vậy, thầy cô mới có thể hỗ trợ em được tốt nhất, em nhé.


Xét trường hợp D nằm ngoài OC (trường hợp còn lại em tự xét).
a.
Do đường tròn đường kính OA cắt OC tại D nên ∠ADO là góc nt chắn nửa đường tròn
\(\Rightarrow\angle ADO=90^0\Rightarrow\angle ADC=90^0\)
=>D thuộc đường tròn đường kính AC (1)
Do CH⊥AB tại H nên \(\angle AHC=90^0\Rightarrow\) H thuộc đường tròn đường kính AC (2)
(1),(2) =>4 điểm A,C,D,H đồng viên
b.
Do A,C,D,H đồng viên (cmt) nên ∠ACD=∠AHD (cùng chắn AD) (3)
Lại có OA=OC (cùng là bán kính của (O)) =>ΔOAC cân tại O
=>∠ACD=∠CAO (4)
(3),(4) =>∠AHD=∠CAO
=>HD song song AC (hai góc so le trong bằng nhau)

ĐKXĐ: x>0
Ta có: \(\frac{\sqrt{x}-1}{x-\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\frac{x-1-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\cdot\left(x-\sqrt{x}+1\right)}\)
Ta có: \(A=\left(x+\frac{1}{\sqrt{x}}\right)\left(\frac{\sqrt{x}-1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\)
\(=\frac{x\sqrt{x}+1}{\sqrt{x}}\cdot\frac{\sqrt{x}-2}{x\sqrt{x}+1}=\frac{\sqrt{x}-2}{\sqrt{x}}\)
Để A nguyên thì \(\sqrt{x}-2\) ⋮\(\sqrt{x}\)
=>-2⋮\(\sqrt{x}\)
=>\(\sqrt{x}\) ∈{1;2}
=>x∈{1;4}
ĐKXĐ: x∉{2;-1;-2}
Ta có: \(\frac{3}{x^2-x-2}+\frac{3}{x^2+3x+2}=\frac{3}{x^2+4}\)
=>\(\frac{1}{x^2-x-2}+\frac{1}{x^2+3x+2}=\frac{1}{x^2+4}\)
=>\(\frac{1}{\left(x-2\right)\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{1}{x^2+4}\)
=>\(\frac{x+2+x-2}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}=\frac{1}{x^2+4}\)
=>\(\frac{2x}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}=\frac{1}{x^2+4}\)
=>\(2x\left(x^2+4\right)=\left(x-1\right)\left(x^2-4\right)\)
=>\(2x^3+8x=x^3-4x-x^2+4\)
=>\(x^3+x^2+12x-4=0\)
=>x≃0,32(nhận)