
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: \(M=1+2+2^2+\cdots+2^{100}\)
=>\(2M=2+2^2+2^3+\cdots+2^{101}\)
=>\(2M-M=2+2^2+2^3+\cdots+2^{101}-1-2-\cdots-2^{100}\)
=>\(M=2^{101}-1\)
b: \(N=1+3^2+3^4+\cdots+3^{100}\)
=>\(9N=3^2+3^4+3^6+\cdots+3^{102}\)
=>\(9N-N=3^2+3^4+\cdots+3^{102}-1-3^2-\cdots-3^{100}\)
=>\(8N=3^{102}-1\)
=>\(N=\frac{3^{102}-1}{8}\)
c: \(P=1+5^3+5^6+\cdots+5^{99}\)
=>\(125P=5^3+5^6+5^9+\cdots+5^{102}\)
=>\(125P-P=5^3+5^6+\cdots+5^{102}-1-5^3-\cdots-5^{99}\)
=>\(124P=5^{102}-1\)
=>\(P=\frac{5^{102}-1}{124}\)

\(3^{x-5}=27\)
<=> \(3^{x-5}=3^3\)
=> x - 5 = 3
=> x = 8
Vậy x = 8

20.
a.
\(4^{n}=256\)
\(4^{n}=4^4\)
\(n=4\)
b.
\(9^{5n-8}=81\)
\(9^{5n-8}=9^2\)
5n-8=2
5n=10
n=2
c.
\(3^{n+2}:27=3\)
\(3^{n+2}=27.3\)
\(3^{n+2}=81\)
\(3^{n+2}=3^4\)
n+2=4
n=2
d.
\(8^{n+2}.2^3=8^5\)
\(8^{n+2}=8^5:2^3\)
\(8^{n+2}=8^4\)
n+2=4
n=2
21.
a.
\(30-2x^2=12\)
\(2x^2=30-12\)
\(2x^2=18\)
\(x^2=18:2=9\)
\(x^2=3^2\)
\(x=\pm3\)
b.
\(\left(9-2x\right)^3=125\)
\(\left(9-2x\right)^3=5^3\)
\(9-2x=5\)
2x=9-5=4
x=2
c.
\(\left(2x-2\right)^4=0\)
2x-2=0
2x=2
x=1
d.
\(\left(x+5\right)^3=\left(2x\right)^3\)
x+5=2x
2x-x=5
x=5

20.
4^n=256
4^n=4^4
n=4
9^5n-8=81
9^5n-8=9^2
5n-8=2
5n=10
n=2
3^n+2:27=3
3^n+2:3^3=3
3^n+2-3=3
n+2-3=1
n=2
8^n+2.2^3=8^5
8^n+2.8=8^5
8^n+2+1=8^5
n+2+1=5
n=2
21.
30-2x^2=12
2x^2=30-12
2x^2=18
x^2=9
x^2=3^2
x=3
(9-2x)^3=125
(9-2x)^3=5^3
(9-2x)=5
2x=4
x=2
(2x-2)^4=0
(2x-2)=0
2x=2
x=1
(x+5)^3=(2x)^3
x+5=2x
x+5-2x=0
(x-2x)=-5
-x=-5
x=5
20:
a: \(4^{n}=256\)
=>\(4^{n}=4^4\)
=>n=4
b: \(9^{5n-8}=81\)
=>\(9^{5n-8}=9^2\)
=>5n-8=2
=>5n=10
=>n=2
c: \(3^{n+2}:27=3\)
=>\(3^{n+2}=27\cdot3=81=3^4\)
=>n+2=4
=>n=2
d: \(8^{n+2}\cdot2^3=8^5\)
=>\(8^{n+2}=8^5:8=8^4\)
=>n+2=4
=>n=2
Bài 21:
a: \(30-2x^2=12\)
=>\(2x^2=30-12=18\)
=>\(x^2=9\)
mà x>=0(do x là số tự nhiên)
nên x=3
b: \(\left(9-2x\right)^3=125\)
=>9-2x=5
=>2x=4
=>x=2
c: \(\left(2x-2\right)^4=0\)
=>2x-2=0
=>2x=2
=>x=1
d: \(\left(x+5\right)^3=\left(2x\right)^3\)
=>2x=x+5
=>2x-x=5
=>x=5

20:
a: \(4^{n}=256\)
=>\(4^{n}=4^4\)
=>n=4
b: \(9^{5n-8}=81\)
=>\(9^{5n-8}=9^2\)
=>5n-8=2
=>5n=10
=>n=2
c: \(3^{n+2}:27=3\)
=>\(3^{n+2}=27\cdot3=81=3^4\)
=>n+2=4
=>n=2
d: \(8^{n+2}\cdot2^3=8^5\)
=>\(8^{n+2}=8^5:8=8^4\)
=>n+2=4
=>n=2
Bài 21:
a: \(30-2x^2=12\)
=>\(2x^2=30-12=18\)
=>\(x^2=9\)
mà x>=0(do x là số tự nhiên)
nên x=3
b: \(\left(9-2x\right)^3=125\)
=>9-2x=5
=>2x=4
=>x=2
c: \(\left(2x-2\right)^4=0\)
=>2x-2=0
=>2x=2
=>x=1
d: \(\left(x+5\right)^3=\left(2x\right)^3\)
=>2x=x+5
=>2x-x=5
=>x=5
bài 20:
\(a.4^{n}=256\)
\(4^{n}=4^4\)
⇒ n = 4
b . \(9^{5n-8}=81\)
\(9^{5n-8}=9^2\)
⇒ 5n - 8 = 2
5n = 2 + 8
5n = 10
n = 10 : 5 = 2
c. \(3^{n+2}:27=3\)
\(3^{n+2}=3\cdot27\)
\(3^{n+2}=81\)
\(3^{n+2}=3^4\)
⇒ n + 2 = 4
⇒ n = 4 - 2 = 2
d. \(8^{n+2}\cdot2^3=8^5\)
\(8^{n+2}=8^5:2^3\)
\(8^{n+2}=8^4\)
⇒ n + 2 = 4
⇒ n = 4 - 2 = 2
bài 21 :
\(a.30-2x^2=12\)
\(2x^2=30-12\)
\(2x^2=18\)
\(x^2=18:2\)
\(x^2=9\)
⇒ x = 3 hoặc x = -3
b. \(\left(9-2x\right)^3=125\)
\(\left(9-2x\right)^3=5^3\)
⇒ 9 - 2x = 5
2x = 9 - 5
2x = 4
x = 4 : 2 = 2
c. \(\left(2x-2\right)^4=0\)
⇒ 2x - 2 = 0
2x = 2
x = 2 : 2 = 1
d. \(\left(x+5\right)^3=\left(2x\right)^3\)
⇒ x + 5 = 2x
⇒ 2x - x = 5
x = 5

a: \(640=2^7\cdot5;1440=2^5\cdot3^2\cdot5\)
=>ƯCLN(640;1440)\(=2^5\cdot5=32\cdot5=160\)
640⋮a; 1440⋮a
=>a∈ ƯC(640;1440)
mà a lớn nhất
nên a=ƯCLN(640;1440)=160
b: \(450=2\cdot3^2\cdot5^2;210=2\cdot3\cdot5\cdot7\)
=>ƯCLN(450;210)\(=2\cdot3\cdot5=30\)
450⋮a; 210⋮a
=>a∈ ƯC(450;210)
mà a lớn nhất
nên a=ƯCLN(450;210)=30
c: \(128=2^7;210=2\cdot3\cdot5\cdot7\)
=>ƯCLN(128;210)=2
128⋮a; 210⋮a
=>a∈ ƯC(128;210)
=>a∈ Ư(2)
mà 6<a<15
nên a∈∅
d: \(2350=2\cdot5^2\cdot47;1260=2^2\cdot3^2\cdot5\cdot7\)
=>ƯCLN(2350;1260)=\(2\cdot5=10\)
2350⋮a; 1260⋮a
=>a ∈ƯC(2350;1260)
=>a∈ Ư(10)
mà 80<a<140
nên a∈∅
e: \(112=2^4\cdot7;140=2^2\cdot5\cdot7\)
=>ƯCLN(112;140)\(=2^2\cdot7=28\)
112⋮a; 140⋮a
=>a ∈ƯC(112;140)
=>a∈ Ư(28)
mà 10<a<20
nên a=14
f: \(144=2^4\cdot3^2;192=2^6\cdot3\)
=>ƯCLN(144;192)\(=2^4\cdot3=16\cdot3=48\)
144⋮a; 192⋮a
=>a∈ ƯC(144;192)
=>a∈ Ư(48)
mà a<20
nên a∈{1;2;3;4;6;8;12;16}
g: \(420=2^2\cdot3\cdot5\cdot7;700=2^2\cdot5^2\cdot7\)
=>ƯCLN(420;700)\(=2^2\cdot5\cdot7=4\cdot5\cdot7=20\cdot7=140\)
420⋮a; 700⋮a
=>a∈ ƯC(420;700)
=>a∈ Ư(140)
mà a lớn nhất
nên a=140

bài 14:
\(a.\left(x-1\right)\cdot100=0\)
\(x-1=0\Rightarrow x=1\)
\(b.200-11x=24\)
\(11x=200-24\)
\(11x=176\)
\(x=\frac{176}{11}=16\)
\(c.165:\left(2x+1\right)=15\) (đkxđ: x khác \(-\frac12)\)
\(2x+1=\frac{165}{15}=11\)
\(2x=11-1=10\)
\(x=\frac{10}{2}=5\)
\(d.375:\left(45-4x\right)=15\) (đkxđ: \(x\ne\frac{45}{4})\)
\(45-4x=\frac{375}{15}=25\)
\(4x=45-25=20\)
\(x=20:4=5\)
bài 15:
giá tiền 125 chiếc điện thoại là:
125 x 2350000=293750000 (đồng)
giá tiền 250 chiếc máy tính bảng là:
250 x 4950000 = 1237500000 (đồng)
tổng số tiền mà cửa hàng phải trả cho số điện thoại và máy tính trên là:
293750000 + 1237500000 = 1531250000 (đồng)
đáp số: 1531250000 đồng
bài 16: từ năm 2022 đến năm 2025 có năm 2024 là năm nhuận
số ngày từ năm 2022 đến năm 2025 là:
365 x 4 + 1 = 1461 (ngày)
1461 : 7 = 208 dư 5
3 + 5 = 8 (chủ nhật)
vậy vào 9/3/2025 , sẽ rơi vào ngày chủ nhật trong tuần
a) \(M=1+2+2^2+2^3+\cdots+2^{100}\)
\(2M=2+2^2+2^3+2^4+\cdots+2^{101}\)
\(2M-M=\left(2+2^2+2^3+2^4+\cdots+2^{101}\right)-\left(1+2+2^2+2^3+\cdots+2^{100}\right)\)
\(\Rightarrow M=2^{101}-1\)
Vậy \(M=2^{101}-1\)
b) \(N=1+3^2+3^4+3^6+\cdots+3^{100}\)
\(3N=3+3^2+3^4+3^6+3^8+\cdots+3^{102}\)
\(3N-N=\left(3+3^2+3^4+3^6+3^8+\cdots+3^{102}\right)-\left(1+3+3^2+3^4+3^6+\cdots+3^{100}\right)\)
\(\Rightarrow2N=3^{102}-1\)
\(\Rightarrow N=\frac{3^{102}-1}{2}\)
Vậy \(N=\frac{3^{102}-1}{2}\)
c) \(P=1+5^3+5^6+5^9+\cdots+5^{99}\)
\(5^3\cdot P=5^3+5^6+5^9+5^{12}\cdots+5^{102}\)
\(125P-P=\left(5^3+5^6+5^9+5^{12}\cdots+5^{102}\right)-\left(1+5^3+5^6+5^9+\cdots+5^{99}\right)\)
\(\Rightarrow124P=5^{102}-1\)
\(\Rightarrow P=\frac{5^{102}-1}{124}\)
Vậy \(P=\frac{5^{102}-1}{124}\)
a: \(M=1+2+2^2+\cdots+2^{100}\)
=>\(2M=2+2^2+2^3+\cdots+2^{101}\)
=>\(2M-M=2+2^2+2^3+\cdots+2^{101}-1-2-\cdots-2^{100}\)
=>\(M=2^{101}-1\)
b: \(N=1+3^2+3^4+\cdots+3^{100}\)
=>\(9N=3^2+3^4+3^6+\cdots+3^{102}\)
=>\(9N-N=3^2+3^4+\cdots+3^{102}-1-3^2-\cdots-3^{100}\)
=>\(8N=3^{102}-1\)
=>\(N=\frac{3^{102}-1}{8}\)
c: \(P=1+5^3+5^6+\cdots+5^{99}\)
=>\(125P=5^3+5^6+5^9+\cdots+5^{102}\)
=>\(125P-P=5^3+5^6+\cdots+5^{102}-1-5^3-\cdots-5^{99}\)
=>\(124P=5^{102}-1\)
=>\(P=\frac{5^{102}-1}{124}\)