
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Xét ΔOCB có
CH là đường trung tuyến
CH là đường cao
DO đó: ΔOCB cân tại C
=>OC=CB
mà OC=OB
nên OC=OB=CB
=>ΔOBC đều
=>\(\hat{COB}=60^0\)
ΔOCD cân tại O
mà OH là đường cao
nên OH là phân giác của góc COD
=>\(\hat{COD}=2\cdot\hat{COH}=2\cdot60^0=120^0\)
=>Số đo cung nhỏ CD là 120 độ
Số đo cung lớn CD là:
\(360^0-120^0=240^0\)

a: Xét ΔAOB có OA=OB=AB(=R)
nên ΔOAB đều
=>\(\hat{AOB}=60^0\)
b: Số đo cung lớn AB là:
\(360^0-60^0=300^0\)

Ta có ΔABC đều
=>\(\hat{ACB}=60^0\)
Xét (O) có \(\hat{ACB}\) là góc nội tiếp chắn cung AB
=>\(\hat{AOB}=2\cdot\hat{ACB}=2\cdot60^0=120^0\)

Vì \(\hat{AOD}=\hat{BOC}\) (hai góc đối đỉnh)
mà sđ cung AD=\(\hat{AOD}\)
và sđ cung BC=\(\hat{BOC}\)
nên sđ cung AD=sđ cung BC
=>\(\overgroup{AD}=\overgroup{BC}\)

C là điểm chính giữa của cung nhỏ AB
=>OC là phân giác của góc AOB
=>\(\) \(\hat{BOC}=\frac12\cdot\hat{AOB}=\frac12\cdot120^0=60^0\)
=>Số đo cung nhỏ BC là 60 độ
Số đo cung lớn BC là \(360^0-60^0=300^0\)

a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=36+64=100=10^2\)
=>BC=10(cm)
Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)
nên \(\hat{C}\) ≃37 độ
ΔABC vuông tại A
=>\(\hat{B}+\hat{C}=90^0\)
=>\(\hat{B}=90^0-37^0=53^0\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\left(1\right)\)
Xét ΔABD vuông tại A có AK là đường cao
nên \(BK\cdot BD=BA^2\left(2\right)\)
Từ (1),(2) suy ra \(BH\cdot BC=BK\cdot BD\)
c: \(BH\cdot BC=BD\cdot BK\)
=>\(\frac{BH}{BK}=\frac{BD}{BC}\)
=>\(\frac{BH}{BD}=\frac{BK}{BC}\)
Xét ΔBHK và ΔBDC có
\(\frac{BH}{BD}=\frac{BK}{BC}\)
góc HBK chung
Do đó: ΔBHK~ΔBDC
=>\(\hat{BKH}=\hat{BCD}=\hat{ACB}\)

Câu 5:
AB=1,6+25=26,6(m)
Ta có: \(\hat{xAC}=\hat{ACB}\) (hai góc so le trong, Ax//BC)
mà \(\hat{xAC}=38^0\)
nên \(\hat{ACB}=38^0\)
Xét ΔABC vuông tại B có tan ACB\(=\frac{AB}{BC}\)
=>\(BC=\frac{AB}{\tan ACB}=\frac{26.6}{\tan38}\) ≃34,0(m)
=>Chiếc xe cách chân tòa nhà khoảng 34m

Câu 7:
Xét tứ giác AHBD có \(\hat{AHB}=\hat{ADB}=\hat{DBH}=90^0\)
nênAHBD là hình chữ nhật
=>HB=AD=68(m)
Xét ΔAHD vuông tại H có \(\tan HAB=\frac{HB}{AH}\)
=>\(AH=\frac{HB}{\tan HAB}=\frac{68}{\tan28}\) ≃127,89(m)
Xét ΔAHC vuông tại H có \(\tan HAC=\frac{HC}{HA}\)
=>\(HC=HA\cdot\tan HAC=127,89\cdot\tan43\) ≃119,26(m)
BC=BH+CH=68+119,26≃187,3(m)
Xét ΔOAB có \(OA^2+OB^2=AB^2\)
nên ΔOAB vuông tại O
=>\(\hat{AOB}=90^0\)
=>số đo cung nhỏ AB=90 độ
Số đo cung lớn AB là \(360^0-90^0=270^0\)