
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Xét ΔOAB có \(OA^2+OB^2=AB^2\)
nên ΔOAB vuông tại O
=>\(\hat{AOB}=90^0\)
=>số đo cung nhỏ AB=90 độ
Số đo cung lớn AB là \(360^0-90^0=270^0\)

a: Xét ΔAOB có OA=OB=AB(=R)
nên ΔOAB đều
=>\(\hat{AOB}=60^0\)
b: Số đo cung lớn AB là:
\(360^0-60^0=300^0\)

Ta có ΔABC đều
=>\(\hat{ACB}=60^0\)
Xét (O) có \(\hat{ACB}\) là góc nội tiếp chắn cung AB
=>\(\hat{AOB}=2\cdot\hat{ACB}=2\cdot60^0=120^0\)

Vì \(\hat{AOD}=\hat{BOC}\) (hai góc đối đỉnh)
mà sđ cung AD=\(\hat{AOD}\)
và sđ cung BC=\(\hat{BOC}\)
nên sđ cung AD=sđ cung BC
=>\(\overgroup{AD}=\overgroup{BC}\)

C là điểm chính giữa của cung nhỏ AB
=>OC là phân giác của góc AOB
=>\(\) \(\hat{BOC}=\frac12\cdot\hat{AOB}=\frac12\cdot120^0=60^0\)
=>Số đo cung nhỏ BC là 60 độ
Số đo cung lớn BC là \(360^0-60^0=300^0\)

a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=36+64=100=10^2\)
=>BC=10(cm)
Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)
nên \(\hat{C}\) ≃37 độ
ΔABC vuông tại A
=>\(\hat{B}+\hat{C}=90^0\)
=>\(\hat{B}=90^0-37^0=53^0\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\left(1\right)\)
Xét ΔABD vuông tại A có AK là đường cao
nên \(BK\cdot BD=BA^2\left(2\right)\)
Từ (1),(2) suy ra \(BH\cdot BC=BK\cdot BD\)
c: \(BH\cdot BC=BD\cdot BK\)
=>\(\frac{BH}{BK}=\frac{BD}{BC}\)
=>\(\frac{BH}{BD}=\frac{BK}{BC}\)
Xét ΔBHK và ΔBDC có
\(\frac{BH}{BD}=\frac{BK}{BC}\)
góc HBK chung
Do đó: ΔBHK~ΔBDC
=>\(\hat{BKH}=\hat{BCD}=\hat{ACB}\)
Xét ΔOCB có
CH là đường trung tuyến
CH là đường cao
DO đó: ΔOCB cân tại C
=>OC=CB
mà OC=OB
nên OC=OB=CB
=>ΔOBC đều
=>\(\hat{COB}=60^0\)
ΔOCD cân tại O
mà OH là đường cao
nên OH là phân giác của góc COD
=>\(\hat{COD}=2\cdot\hat{COH}=2\cdot60^0=120^0\)
=>Số đo cung nhỏ CD là 120 độ
Số đo cung lớn CD là:
\(360^0-120^0=240^0\)