K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAOB có OA=OB=AB(=R)

nên ΔOAB đều

=>\(\hat{AOB}=60^0\)

b: Số đo cung lớn AB là:

\(360^0-60^0=300^0\)

Xét ΔOAB có \(OA^2+OB^2=AB^2\)

nên ΔOAB vuông tại O

=>\(\hat{AOB}=90^0\)

=>số đo cung nhỏ AB=90 độ

Số đo cung lớn AB là \(360^0-90^0=270^0\)

Xét ΔOCB có

CH là đường trung tuyến

CH là đường cao

DO đó: ΔOCB cân tại C

=>OC=CB

mà OC=OB

nên OC=OB=CB

=>ΔOBC đều

=>\(\hat{COB}=60^0\)

ΔOCD cân tại O

mà OH là đường cao

nên OH là phân giác của góc COD

=>\(\hat{COD}=2\cdot\hat{COH}=2\cdot60^0=120^0\)

=>Số đo cung nhỏ CD là 120 độ

Số đo cung lớn CD là:

\(360^0-120^0=240^0\)

Ta có ΔABC đều

=>\(\hat{ACB}=60^0\)

Xét (O) có \(\hat{ACB}\) là góc nội tiếp chắn cung AB

=>\(\hat{AOB}=2\cdot\hat{ACB}=2\cdot60^0=120^0\)

\(\hat{AOD}=\hat{BOC}\) (hai góc đối đỉnh)

mà sđ cung AD=\(\hat{AOD}\)

và sđ cung BC=\(\hat{BOC}\)

nên sđ cung AD=sđ cung BC

=>\(\overgroup{AD}=\overgroup{BC}\)

C là điểm chính giữa của cung nhỏ AB

=>OC là phân giác của góc AOB

=>\(\) \(\hat{BOC}=\frac12\cdot\hat{AOB}=\frac12\cdot120^0=60^0\)

=>Số đo cung nhỏ BC là 60 độ

Số đo cung lớn BC là \(360^0-60^0=300^0\)

S
28 tháng 8

a. xét △ BIA và △ BAC có:

góc BIA = góc BAC = 90 độ

góc IAB = góc ACB (cùng phụ với góc B)

⇒ △ BIA ~ △ BAC (g-g)

\(\Rightarrow\frac{AB}{IB}=\frac{BC}{AB}\Rightarrow AB^2=IB\cdot BC\)

b. xét △ BIA và △ AIC ta có:

góc BIA = góc AIC = 90 độ

góc IAB = góc ICA (cùng phụ với góc B)

⇒ △ BIA ~ △ AIC (g-g)

\(\Rightarrow\frac{IA}{IB}=\frac{IC}{IA}\Rightarrow IA^2=IB\cdot IC\)

c. áp dụng định lý pythagore vào △ ABC vuông tại A ta có:

\(AB=\sqrt{BC^2-AC^2}=\sqrt{26^2-10^2}=24\left(\operatorname{cm}\right)\)

ta có: AB.AC = BC.AI

\(\Rightarrow AI=\frac{AB\cdot AC}{BC}=\frac{24\cdot10}{26}=\frac{120}{13}\left(\operatorname{cm}\right)\)

△ ABC vuông tại A có:

\(\sin B=\frac{AC}{BC}=\frac{10}{26}\Rightarrow\) góc B ≈ 23⁰

⇒ góc C = 90⁰ - 23⁰ = 67⁰

d. xét tứ giác AHIK có:

góc BAC = góc AHI = góc IKA = 90 độ

⇒ tứ giác AHIK là hình chữ nhật

⇒ AI = HK = \(\frac{120}{13}\left(\operatorname{cm}\right)\)

e. xét △ AKI và △ AIC ta có:

góc AKI = góc AIC = 90 độ

góc AIK = góc ACI (cùng phụ với góc IAK)

⇒ △ AKI ~ △ AIC (g-g)

\(\frac{AK}{AI}=\frac{AI}{AC}\Rightarrow AI^2=AK\cdot AC\) (1)

áp dụng định lý pythagore vào △ AIB vuông tại I ta có:

\(AI^2=AB^2-BI^2\) (2)

TỪ (1) và (2) ⇒ \(AK\cdot AC=AB^2-BI^2\)

gọi O là giao điểm của đường chéo HK và AI

AHIK là hình chữ nhật ⇒ OH = OA

⇒ △ OHA cân tại O

⇒ góc OHA = góc OAH

xét △ AHK và △ ACB ta có:

góc A chung

góc AHK = góc ACB (cùng bằng HAO)

⇒ △ AHK ~ △ ACB (g-g)

f. vì góc ACB = góc IAB (câu a)

nên \(\cot ACB=\cot IAB=\frac{AH}{HI}\) (3)

mà góc AHO = góc IAB (câu e)

\(\Rightarrow\cot IAB=\cot AHO=\frac{AH}{AK}\) (4)

từ (3) và (4) \(\frac{AH}{HI}=\frac{AH}{AK}\)

mà HI = AK (tứ giác AHIK là hình chữ nhật)

\(\Rightarrow\cot ACB=\frac{AH}{AK}\Rightarrow AH=AK\cdot\cot ACB\) (đpcm)

S
28 tháng 8

https://www.mediafire.com/view/081yqwybhunkx2n/4775e38e-3527-4b6b-b173-16c028c7b87b.jfif/file

link hình ảnh, mình không up ảnh lên được