K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 6:

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

=>AMCK là hình bình hành

b: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=MB=MC

Xét hình bình hành AMCK có MA=MC

nên AMCK là hình thoi

c: Ta có: AMCK là hình thoi

=>AK//CM và AK=CM

AK//CM

=>AK//MB

Ta có: AK=CM

CM=MB

Do đó; AK=MB

Xét tứ giác ABMK có

AK//MB

AK=MB

Do đó; ABMK là hình bình hành

d: Xét tứ giác ABEC có

M là trung điểm chung của AE và BC

=>ABEC là hình bình hành

Hình bình hành ABEC có AB=AC

nên ABEC là hình thoi

Bài 5:

a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có

AD=CB

\(\hat{ADH}=\hat{CBK}\) (hai góc so le trong, AD//BC)

Do đó: ΔAHD=ΔCKB

b: ΔAHD=ΔCKB

=>HD=KB; AH=CK

ta có: AH⊥BD

CK⊥BD

Do đó:AH//CK

Xét tứ giác AHCK có

AH//CK

AH=CK

Do đó: AHCK là hình bình hành

c: Ta có: AH//CK

=>AM//CN

ta có: AB//CD
=>AN//CM

Xét tứ giác ANCM có

AN//CM

AM//CN

Do đó: ANCM là hình bình hành

d: Ta có; ANCM là hình bình hành

=>AC cắt NM tại trung điểm của mỗi đường(1)

Ta có:ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1),(2) suy ra AC,MN,BD đồng quy

Bài 2:

a: Ta có: \(AE=EB=\frac{AB}{2}\)

\(DF=FC=\frac{DC}{2}\)

mà AB=CD

nên AE=EB=DF=FC

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét tứ giác BEDF có

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

=>DE//BF

=>FN//EM

Ta có: AECF là hình bình hành

=>AF//CE

=>FM//EN

Xét tứ giác MENF có

ME//NF

MF//NE

Do đó: MENF là hình bình hành

c: Ta có: MENF là hình bình hành

=>MN cắt EF tại trung điểm của mỗi đường(1)

Ta có: AECF là hình bình hành

=>AC cắt EF tại trung điểm của mỗi đường(2)

Từ (1),(2) suy ra AC,EF,MN đồng quy


S
24 tháng 8

bài 1:

\(A=-2xy+\frac32xy^2+\frac12xy^2+xy-3\)

\(=\left(\frac32+\frac12\right)xy^2+\left(-2xy+xy\right)-3\)

\(=2xy^2-xy-3\) (bậc 3)

\(B=-xy^2z+2x^2yz-xyz-3xy^2z-2x^2yz\)

\(=\left(2x^2yz-2x^2yz\right)+\left(-xy^2z-3xy^2z\right)-xyz\)

\(=-4xy^2z-xyz\) (bậc 4)

\(C=4x^2y^3+x^4-2x^2y^3+5x^4-2x^2y^3+3\)

\(=\left(4-2-2\right)x^2y^3+\left(1+5\right)x^4+3\)

\(=6x^4+3\) (bậc 4)

\(D=\frac34xy^2-2xy+3-\frac12xy^2-4xy-7\)

\(=\left(\frac34-\frac12\right)xy^2+\left(-2xy-4xy\right)+\left(3-7\right)\)

\(=\frac14xy^2-6xy-4\) (bậc 3)

\(E=-\frac34x^2y-5xy+\frac12x^2y+10xy-x^2y+xy\)

\(=\left(-\frac34+\frac12-1\right)x^2y+\left(-5+10+1\right)xy\)

\(=-\frac54x^2y+6xy\) (bậc 3)

\(F=3xy^2z-xy^2z-xyz+2xy^2z-3xyz-5xy^2z\)

\(=\left(3-1+2-5\right)xy^2z+\left(-1-3\right)xyz\)

\(=-xy^2z-4xyz\) (bậc 4)

bài 2; 1. thay x=y=-1 vào A ta được:

\(A=6\left(-1\right)\left(-1\right)^2+7\left(-1\right)\left(-1\right)^3+8\left(-1\right)^2\left(-1\right)^3=-7\)

2. \(B=x^6+2x^2y^3-x^2+xy-x^2y^3-x^6+x^5=x^2y^3+xy\)

thay x=-2; y=-1 vào B ta được:

\(4\cdot\left(-1\right)+2=-2\)

3. \(C=7xy^2-4xy+2xy^2-xy-9xy^2+5xy-\frac12x^2y^3=-\frac12x^2y^3\)

thay x = 15; y = -3 vào C ta được:

\(C=-\frac12\cdot15^2\cdot\left(-3\right)^3=3037,5\)

4. \(D=\frac23x^2y+3x^2y-x^2y-1=\frac83x^2y-1\)

thay x = -3; y = 1 vào D ta được:

\(\frac83\cdot\left(-3\right)^2\cdot1-1=23\)

bài 4:

1. \(A+B=\left(x+2y\right)+\left(x-2y\right)=2x\)

\(A-B=\left(x+2y\right)-\left(x-2y\right)=4y\)

2. \(B+A=\left(x^3+2xy^2-2\right)+\left(2x^2y-x^3-3xy^2+1\right)\)

\(=2x^2y+\left(2xy^2-xy^2\right)+\left(-2+1\right)\)

\(=2x^2y+xy^2-1\)

\(B-A=\left(x^3+2xy^2-2\right)-\left(2x^2y-x^3-xy^2+1\right)\)

\(=x^3+2xy^2-2-2x^2y+x^3+xy^2-1\)

\(=2x^3-2x^2y+3xy^2-3\)

3. \(A-B=\left(\frac12x^2y+xy^3-\frac52x^3y^2+x^3\right)-\left(\frac72x^3y^2-\frac12x^2y+xy^3\right)\)

\(=\frac12x^2y+\frac12x^2y+\left(xy^3-xy^3\right)+\left(-\frac52-\frac72\right)x^3y^2+x^3\)

\(=x^2y-6x^3y^2+x^3\)

\(B-A=-\left(A-B\right)=-\left(x^2y-6x^3y^2+x^3\right)=6x^3y^2-x^2y-x^3\)

24 tháng 8

giúp em làm bài 1,2,4 với ạ

em cảm ơn ạ


a: ta có: EI⊥BF

AC⊥BF

Do đó: EI//AC

=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{KBE}=\hat{IEB}\)

Xét ΔKBE vuông tại K và ΔIEB vuông tại I có

BE chung

\(\hat{KBE}=\hat{IEB}\)

Do đó: ΔKBE=ΔIEB

=>EK=BI

b: Điểm D ở đâu vậy bạn?

\(\frac{9x+5}{6\cdot\left(x+3\right)^2}-\frac{5x-7}{6\left(x+3\right)^2}\)

\(=\frac{9x+5-5x+7}{6\left(x+3\right)^2}\)

\(=\frac{4x+12}{6\left(x+3\right)^2}=\frac{4\left(x+3\right)}{6\left(x+3\right)^2}=\frac{2}{3\left(x+3\right)}\)

Bài 4:

AB//CD

=>\(\hat{BAK}=\hat{AKD}\) (hai góc so le trong)

\(\hat{BAK}=\hat{DAK}\) (AK là phân giác của góc BAD)

nên \(\hat{DAK}=\hat{DKA}\)

=>DA=DK

Ta có: DK+KC=DC

DA+BC=DC

mà DK=DA

nên CK=CB

=>ΔCKB cân tại C

=>\(\hat{CKB}=\hat{CBK}\)

\(\hat{CKB}=\hat{ABK}\) (hai góc so le trong, AB//CD)

nên \(\hat{ABK}=\hat{CBK}\)

=>BK là phân giác của góc ABC

Bài 2:

a: Xét ΔDAB có

K,E lần lượt là trung điểm của DA,DB

=>KE là đường trung bình của ΔDAB

=>KE//AB và \(KE=\frac{AB}{2}\)

Xét ΔCAB có

F,G lần lượt là trung điểm của CA,CB

Do đó: FG là đường trung bình của ΔCAB

=>FG//AB và \(FG=\frac{AB}{2}\)

Xét hình thang ABCD có

K,G lần lượt là trung điểm của AD,BC

=>KG là đường trung bình của hình thang ABCD

=>KG//AB//CD và \(KG=\frac12\left(AB+CD\right)\)

Ta có: FG//AB

KG//AB

FG,KG có điểm chung là G

Do đó: F,G,K thẳng hàng(1)

ta có: KE//AB

KG//AB

KE,KG có điểm chung là K

Do đó: K,E,G thẳng hàng(2)

Từ (1),(2) suy ra K,E,F,G thẳng hàng

b: Ta có: KE+EF+FG=KG

=>\(EF+\frac12AB+\frac12AB=\frac12\left(CD+AB\right)\)

=>\(EF=\frac12\left(CD+AB-2AB\right)=\frac12\left(CD-AB\right)\)

a: Xét ΔBDE vuông tại E và ΔBCD vuông tại D có

\(\hat{DBE}\) chung

Do đó: ΔBDE~ΔBCD

b: Xét ΔBFD vuông tại F và ΔBDA vuông tại D có

\(\hat{FBD}\) chung

Do đó: ΔBFD~ΔBDA

=>\(\frac{BF}{BD}=\frac{BD}{BA}\)

=>\(BD^2=BF\cdot BA\)

c: ΔBDE~ΔBCD

=>\(\frac{BD}{BC}=\frac{BE}{BD}\)

=>\(BD^2=BE\cdot BC\)

=>\(BE\cdot BC=BF\cdot BA\)

=>\(\frac{BE}{BA}=\frac{BF}{BC}\)

Xét ΔBEF và ΔBAC có

\(\frac{BE}{BA}=\frac{BF}{BC}\)

góc EBF chung

Do đó: ΔBEF~ΔBAC

=>\(\hat{BFE}=\hat{BCA}\)


Gọi I là trung điểm của DE
=>I là tâm đường tròn đường kính DE

ĐƯờng trung trực của BC cắt BC,AC,AB lần lượt tại M,D,E

=>MB=MC; EB=EC; DB=DC

MB=MC nên M la trung điểm của BC

ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MB

=>ΔMAB cân tại M

=>\(\hat{MAB}=\hat{MBA}\)

ΔAED vuông tại A

mà AI là đường trung tuyến

nên IA=IE

=>ΔIAE cân tại I

=>\(\hat{IAE}=\hat{IEA}\)

\(\hat{IEA}=\hat{MEB}\) (hai góc đối đỉnh)

nên \(\hat{IAE}=\hat{MEB}\)

Ta có: DM là đường trung trực của BC

=>DM⊥BC tại M

Xét tứ giác AEMC có \(\hat{CAE}+\hat{CME}+\hat{ACM}+\hat{AEM}=360^0\)

=>\(\hat{ACM}+\hat{AEM}=360^0-90^0-90^0=180^0\)

\(\hat{AEM}+\hat{BEM}=180^0\) (hai góc kề bù)

nên \(\hat{BEM}=\hat{ACB}\)

\(\hat{MAI}=\hat{MAE}+\hat{IAE}=\hat{MAB}+\hat{MEB}\)

\(=\hat{MBA}+\hat{MCA}=90^0\)

=>AM⊥IA tại A

ΔAED vuông tại A

mà AI là đường trung tuyến

nên IA=IE=ID

=>A nằm trên (I)

Xét (I) có

IA là bán kính

AM⊥ AI tại A

Do đó: AM là tiếp tuyến tại A của (I)

=>AM là tiếp tuyến của đường tròn đường kính DE

Xét tứ giác APMQ có \(\hat{APM}=\hat{AQM}=\hat{PAQ}=90^0\)

nên APMQ là hình chữ nhật