
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?

a: Xét tứ giác AEDF có \(\hat{AED}=\hat{AFD}=\hat{FAE}=90^0\)
nên AEDF là hình chữ nhật
b: AEDF là hình chữ nhật
=>DF//AE và DF=AE
DF//AE
=>GF//AE
Ta có DF=AE
DF=FG
Do đó: GF=AE
Xét tứ giác AEFG có
AE//FG
AE=FG
Do đó: AEFG là hình bình hành
c: AEDF là hình chữ nhật
=>AD cắt EF tại trung điểm của mỗi đường
mà H là trung điểm của AD
nên H là trung điểm của FE
AEDF là hình chữ nhật
=>AD=FE
mà \(HA=HD=\frac{AD}{2};HF=HE=\frac{EF}{2}\)
nên \(HA=HD=HF=HE=\frac{EF}{2}=\frac{AD}{2}\)
HI=HF
\(HF=HA\)
\(HA=\frac{AD}{2}\)
Do đó: \(IH=\frac{AD}{2}\)
Xét ΔIAD có
IH là đường trung tuyến
\(IH=\frac{AD}{2}\)
Do đó: ΔIAD vuông tại I
=>IA⊥ID


1: Xét ΔBAC có KI//AC
nên \(\frac{BK}{BA}=\frac{BI}{BC}\)
Xét ΔBAC có IE//AB
nên \(\frac{CE}{CA}=\frac{CI}{CB}\)
ta có: \(\frac{BK}{BA}+\frac{CE}{CA}\)
\(=\frac{BI}{BC}+\frac{CI}{BC}=\frac{BC}{BC}=1\)
2: Qua M, kẻ MG//IE(G∈AC)
=>DE//MG
Xét ΔAMG có DE//MG
nên \(\frac{AE}{AG}=\frac{DE}{MG}\)
=>\(\frac{DE}{AE}=\frac{MG}{AG}\)
ta có: MG//IE
IE//AB
Do đó: MG//AB
Xét ΔABC có
M là trung điểm của BC
MG//AB
Do đó: G là trung điểm của AC
=>GA=GC
=>\(\frac{DE}{AE}=\frac{MG}{AG}=\frac{MG}{CG}\)
Xét ΔCAB có MG//AB
nên \(\frac{MG}{AB}=\frac{CG}{AC}\)
=>\(\frac{MG}{CG}=\frac{AB}{AC}\)
=>\(\frac{DE}{AE}=\frac{AB}{AC}\)
c:
Xét tứ giác AKIE có
AK//IE
AE//KI
Do đó: AKIE là hình bình hành
=>KI=AE: AK=IE
Xét ΔBAC có KI//AC
nên \(\frac{BK}{BA}=\frac{KI}{AC}\)
=>\(\frac{BK}{KI}=\frac{AB}{AC}\)
=>\(\frac{DE}{AE}=\frac{BK}{KI}\)
mà AE=KI
nên DE=BK