
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Cô Hoài giả đó em ạ! Em thông minh đó, vẫn còn nhận ra thiếu chữ quản trị viên!
Khi cô nhắn tin với các em thì cạnh tên hiển thị phải kèm theo tên đăng nhập là: thuonghoaitb và chức danh quản trị viên nữa mới là cô Hoài thật.

bài 14:
\(a.\left(x-1\right)\cdot100=0\)
\(x-1=0\Rightarrow x=1\)
\(b.200-11x=24\)
\(11x=200-24\)
\(11x=176\)
\(x=\frac{176}{11}=16\)
\(c.165:\left(2x+1\right)=15\) (đkxđ: x khác \(-\frac12)\)
\(2x+1=\frac{165}{15}=11\)
\(2x=11-1=10\)
\(x=\frac{10}{2}=5\)
\(d.375:\left(45-4x\right)=15\) (đkxđ: \(x\ne\frac{45}{4})\)
\(45-4x=\frac{375}{15}=25\)
\(4x=45-25=20\)
\(x=20:4=5\)
bài 15:
giá tiền 125 chiếc điện thoại là:
125 x 2350000=293750000 (đồng)
giá tiền 250 chiếc máy tính bảng là:
250 x 4950000 = 1237500000 (đồng)
tổng số tiền mà cửa hàng phải trả cho số điện thoại và máy tính trên là:
293750000 + 1237500000 = 1531250000 (đồng)
đáp số: 1531250000 đồng
bài 16: từ năm 2022 đến năm 2025 có năm 2024 là năm nhuận
số ngày từ năm 2022 đến năm 2025 là:
365 x 4 + 1 = 1461 (ngày)
1461 : 7 = 208 dư 5
3 + 5 = 8 (chủ nhật)
vậy vào 9/3/2025 , sẽ rơi vào ngày chủ nhật trong tuần

Giải:
Từ trang 1 đến trang 9 số các số có 1 chữ số là:
(9 - 1) : 1 + 1 = 9
Từ trang 10 đến trang 99 số các số có 2 chữ số là:
(99 - 10) : 1+ 1 = 90 (số)
Từ trang 100 đến trang 220 số các số có 3 chữ số là:
(220 - 100) : 1 + 1 = 121(số)
Để đánh số trang quyển sách dày 220 trang thì cần số chữ số là:
1 x 9 + 2 x 90 + 3 x 121 = 552 (chữ số)
Kết luận: Đánh cuốn sách dày 220 trang cần 552 chữ số.
Số chữ số cần dùng để đánh số cho trang từ 1 đến 9 là:
\(\left(9-1+1\right)\cdot1=9\cdot1=9\) (chữ số)
Số chữ số cần dùng để đánh số cho trang từ 10 đến 99 là:
\(\left(99-10+1\right)\cdot2=90\cdot2=180\) (chữ số)
Số chữ số cần dùng để đánh số cho trang từ 100 đến 220 là:
\(\left(220-100+1\right)\cdot3=121\cdot3=363\) (chữ số)
Tổng số chữ số cần dùng là:
363+9+180=552(chữ số)

6A: Số dư lớn nhất có thể nên số dư là 8-1=7
Số bị chia là: \(19\cdot8+7=159\)
6B: Số dư nhỏ nhất có thể nên số dư là 0
Số bị chia là \(23\cdot15=345\)
7A: Gọi số chia là x(Điều kiện: x<>0)
Số bị chia là 10x+8
Tổng của số bị chia; thương; số dư là 116 nên ta có:
10x+8+10+8=116
=>10x+26=116
=>10x=90
=>x=9(nhận)
Vậy: Số chia là 9
7B: GỌi số chia là x(Điều kiện: x<>0)
Số bị chia là 6x+4
Tổng của số bị chia, thương và số dư là 62 nên ta có:
6x+4+6+4=62
=>6x+8+6=62
=>6x+14=62
=>6x=48
=>x=8(nhận)
Vậy: Số chia là 8

4A:
a: 6(x-3)=0
=>x-3=0
=>x=3
b: 12x+15=135
=>12x=135-15=120
=>x=120:12=10
c: (4x+25):15=7
=>\(4x+25=15\cdot7=105\)
=>4x=105-25=80
=>x=80:4=20
d: 225:(20-5x)=15
=>20-5x=225:15=15
=>5x=20-15=5
=>x=1
4B:
a: \(\left(x-15\right)\cdot8=0\)
=>x-15=0
=>x=15
b: 6x-45=27
=>6x=45+27=72
=>\(x=\frac{72}{6}=12\)
c: 187:(5x+2)=11
=>5x+2=187:11=17
=>5x=17-2=15
=>x=3
d: 224:(2x-6)=16
=>2x-6=224:16=14
=>2x=20
=>x=10

Bài 8:
a: \(5^3=125;3^5=243\)
mà 125<243
nên \(5^3<3^5\)
b: \(7\cdot2^{13}<8\cdot2^{13}=2^3\cdot2^{13}=2^{16}\)
c: \(27^5=\left(3^3\right)^5=3^{3\cdot5}=3^{15}\)
\(243^3=\left(3^5\right)^3=3^{5\cdot3}=3^{15}\)
Do đó: \(27^5=243^5\)
d: \(625^5=\left(5^4\right)^5=5^{4\cdot5}=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{3\cdot7}=5^{21}\)
mà 20<21
nên \(625^5<125^7\)
Bài 9:
a: \(3^{x}\cdot5=135\)
=>\(3^{x}=\frac{135}{5}=27=3^3\)
=>x=3(nhận)
b: \(\left(x-3\right)^3=\left(x-3\right)^2\)
=>\(\left(x-3\right)^3-\left(x-3\right)^2=0\)
=>\(\left(x-3\right)^2\cdot\left\lbrack\left(x-3\right)-1\right\rbrack=0\)
=>\(\left(x-3\right)^2\cdot\left(x-4\right)=0\)
=>\(\left[\begin{array}{l}x-3=0\\ x-4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=3\left(nhận\right)\\ x=4\left(nhận\right)\end{array}\right.\)
c: \(\left(2x-1\right)^4=81\)
=>\(\left[\begin{array}{l}2x-1=3\\ 2x-1=-3\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=4\\ 2x=-2\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\left(nhận\right)\\ x=-1\left(loại\right)\end{array}\right.\)
d: \(\left(5x+1\right)^2=3^2\cdot5+76\)
=>\(\left(5x+1\right)^2=9\cdot5+76=45+76=121\)
=>\(\left[\begin{array}{l}5x+1=11\\ 5x+1=-11\end{array}\right.\Rightarrow\left[\begin{array}{l}5x=10\\ 5x=-12\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\left(nhận\right)\\ x=-\frac{12}{5}\left(loại\right)\end{array}\right.\)
e: \(5+2^{x-3}=29-\left\lbrack4^2-\left(3^2-1\right)\right\rbrack\)
=>\(2^{x-3}+5=29-\left\lbrack16-9+1\right\rbrack\)
=>\(2^{x-3}+5=29-8=21\)
=>\(2^{x-3}=16=2^4\)
=>x-3=4
=>x=4+3=7(nhận)
f: \(3+2^{x-1}=24-\left\lbrack4^2-\left(2^2-1\right)\right\rbrack\)
=>\(2^{x-1}+3=24-\left\lbrack16-4+1\right\rbrack=24-13=11\)
=>\(2^{x-1}=11-3=8=2^3\)
=>x-1=3
=>x=4(nhận)
Bài 6:
a: \(5\cdot5\cdot5\cdot5\cdot5\cdot5=5^6\)
b: \(27\cdot14\cdot7\cdot2=27\cdot14\cdot14=3^3\cdot14^2\)
c: \(x\cdot x\cdot x\cdot y=x^3\cdot y\)
d: \(5^3\cdot5^4=5^{3+4}=5^7\)
e: \(7^8:7^2=7^{8-2}=7^6\)
f: \(42^7:6^7\cdot49=7^7\cdot49=7^7\cdot7^2=7^{7+2}=7^9\)
Sửa đề: \(3^{n+2}-2^{n+2}+3^{n}-2^{n}\)
Ta có: \(3^{n+2}+3^{n}-2^{n+2}-2^{n}\)
\(=3^{n}\cdot3^2+3^{n}-2^{n}\cdot4-2^{n}\)
\(=3^{n}\left(3^2+1\right)-2^{n}\cdot\left(4+1\right)\)
\(=3^{n}\cdot10-2^{n}\cdot5=3^{n}\cdot10-2^{n-1}\cdot10=10\left(3^{n}-2^{n-1}\right)\) ⋮10
Sửa đề : 3^n+2 - 2^n+2 + 3^n - 2^n
Ta có : 3^n+2 + 3^n - 2^n+2 - 2^n
= 3^n . 3^2 + 3^n - 2^n . 4 - 2^n
= 3^n . ( 3^2 + 1 ) - 2^n . ( 4 + 1 )
= 3^n . 10 - 2^n . 5 = 3^n . 10 - 2^n-1 . 10 = 10 . ( 3^n - 2^n-1 ) chia hết cho 10