K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 giờ trước (18:11)

Bài 2:

a: ĐKXĐ: x∉{2;-2}

b: \(A=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2x-4}{x^2-4}\)

\(=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2}{x+2}=\frac{3x}{x-2}\)

c: Thay x=-5 vào A, ta được:

\(A=\frac{3\cdot\left(-5\right)}{-5-2}=\frac{-15}{-7}=\frac{15}{7}\)

d: Để A nguyên thì 3x⋮x-2

=>3x-6+6⋮x-2

=>6⋮x-2

=>x-2∈{1;-1;2;-2;3;-3;6-6}

=>x∈{1;2;4;0;5;-1;8;-4}

Kết hợp ĐKXĐ, ta được: x∈{1;4;0;5;-1;8;-4}

Bài 1:

a: \(A=x^2+10x+25\)

\(=x^2+2\cdot x\cdot5+5^2=\left(x+5\right)^2\)

b: \(B=x^2-y^2+8x-8y\)

=(x-y)(x+y)+8(x-y)

=(x-y)(x+y+8)

c: \(C=x^2+4x-5\)

\(=x^2+5x-x-5\)

=x(x+5)-(x+5)

=(x+5)(x-1)

12 giờ trước (9:47)

a: ta có: EI⊥BF

AC⊥BF

Do đó: EI//AC

=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{KBE}=\hat{IEB}\)

Xét ΔKBE vuông tại K và ΔIEB vuông tại I có

BE chung

\(\hat{KBE}=\hat{IEB}\)

Do đó: ΔKBE=ΔIEB

=>EK=BI

b: Điểm D ở đâu vậy bạn?

7 giờ trước (14:38)

làm bài 10 và bài 11 cần gấp ạ


3 giờ trước (18:20)

bài 13:

a: Xét tứ giác AMHN có \(\hat{AMH}=\hat{ANH}=\hat{MAN}=90^0\)

nên AMHN là hình chữ nhật

b: Xét ΔAMH vuông tại M và ΔAMD vuông tại M có

AM chung

MH=MD

Do đó: ΔAMH=ΔAMD

=>\(\hat{MAH}=\hat{MAD}\)

=>AM là phân giác của góc HAD

=>\(\hat{HAD}=2\cdot\hat{HAM}\)

Xét ΔANH vuông tại N và ΔANE vuông tại N có

AN chung

NH=NE

Do đó: ΔANH=ΔANE

=>\(\hat{NAH}=\hat{NAE}\)

=>AN là phân giác của góc HAE

=>\(\hat{HAE}=2\cdot\hat{HAN}\)

Ta có: \(\hat{DAE}=\hat{DAH}+\hat{EAH}\)

\(=2\left(\hat{HAN}+\hat{HAM}\right)=2\cdot\hat{NAM}=180^0\)

=>D,A,E thẳng hàng

c: ΔAHM=ΔADM

=>AH=AD

ΔANH=ΔANE

=>AH=AE

Xét ΔAHB và ΔADB có

AH=AD

\(\hat{HAB}=\hat{DAB}\)

AB chung

Do đó: ΔAHB=ΔADB

=>\(\hat{AHB}=\hat{ADB}\)

=>\(\hat{ADB}=90^0\)

=>BD⊥AD

=>BD⊥ DE(2)

Xét ΔAHC và ΔAEC có

AH=AE

\(\hat{HAC}=\hat{EAC}\)

AC chung

Do đó: ΔAHC=ΔAEC

=>\(\hat{AHC}=\hat{AEC}\)

=>\(\hat{AEC}=90^0\)

=>CE⊥ DE(1)

Từ (1),(2) suy ra BD//CE

=>BDEC là hình thang

d: Xét ΔHED có

N,M lần lượt là trung điểm của HE,HD

=>NM là đường trung bình của ΔHED
=>ED=2MN=MN+AH

Bài 12:

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

Hình bình hành ABDC có \(\hat{BAC}=90^0\)

nên ABDC là hình chữ nhật

b: ABDC là hình chữ nhật

=>AB//DC và AB=DC

AB//DC

=>DC//BE

ta có: AB=DC

AB=BE

Do đó: DC=BE

Xét tứ giác BCDE có

BE//DC

BE=DC

Do đó: BCDE là hình bình hành

c: DK=2BK

DK+BK=DB

Do đó: DB=2BK+BK=3BK

=>\(\frac{DK}{DB}=\frac23\)

Xét ΔADE có

DB là đường trung tuyến

\(DK=\frac23DB\)

Do đó: K là trọng tâm của ΔADE

Xét ΔADE có

K là trọng tâm

M là trung điểm của AD

Do đó: E,K,M thẳng hàng

=>EK,AD,BC đồng quy

12 giờ trước (9:47)

a: ta có: EI⊥BF

AC⊥BF

Do đó: EI//AC

=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{KBE}=\hat{IEB}\)

Xét ΔKBE vuông tại K và ΔIEB vuông tại I có

BE chung

\(\hat{KBE}=\hat{IEB}\)

Do đó: ΔKBE=ΔIEB

=>EK=BI

Từ đề bài, ta có hình vẽ sau:

\(\hat{BAC}=\hat{BAH}+\hat{CAH}=10^0+10^0=20^0\)

Xét ΔABC có

AH là đường cao

AH là đường phân giác

Do đó: ΔABC cân tại A

=>\(\hat{ABC}=\frac{180^0-\hat{BAC}}{2}=\frac{180^0-20^0}{2}=80^0\)

Ta có: \(\hat{KBC}+\hat{KBA}=\hat{ABC}\) (tia BK nằm giữa hai tia BA và BC)

=>\(\hat{KBA}=80^0-40^0=40^0\)

Xét ΔABG và ΔACG có

AB=AC

\(\hat{BAG}=\hat{CAG}\)

AG chung

Do đó: ΔABG=ΔACG

=>\(\hat{ABG}=\hat{ACG}\)

=>\(x=40^0\)

Bài 6:

a: \(A=n^2\left(n-1\right)+2n\left(1-n\right)\)

\(=n^2\left(n-1\right)-2n\left(n-1\right)\)

\(=\left(n-1\right)\left(n^2-2n\right)=n\left(n-1\right)\left(n-2\right)\)

Vì n;n-1;n-2 là ba số nguyên liên tiếp

nên n(n-1)(n-2)⋮3!

=>n(n-1)(n-2)⋮6

=>A⋮6

b: \(M=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)

\(=\left(12x^2+12x-x-1\right)\left(12x^2+8x+3x+2\right)-4\)

\(=\left(12x^2+11x-1\right)\left(12x^2+11x+2\right)-4\)

\(=\left(12x^2+11x\right)^2+2\left(12x^2+11x\right)-\left(12x^2+11x\right)-2-4\)

\(=\left(12x^2+11x\right)^2+\left(12x^2+11x\right)-6\)

\(=\left(12x^2+11x+3\right)\left(12x^2+11x-2\right)\)

Bài 4:

a: \(A=x\left(x-y\right)^2-y\left(x-y\right)^2+xy^2-x^2y\)

\(=\left(x-y\right)^2\cdot\left(x-y\right)+xy\left(y-x\right)\)

\(=\left(x-y\right)^3-xy\left(x-y\right)\)

Khi x-y=5 và xy=4 thì \(A=5^3-4\cdot5=125-20=105\)

b: \(B=65^2-35^2+83^2-17^2\)

\(=\left(65-35\right)\left(65+35\right)+\left(83-17\right)\left(83+17\right)\)

\(=100\cdot30+100\cdot66=100\cdot96=9600\)

Bài 3:

a: \(4x\cdot\left(x+3\right)-x-3=0\)

=>4x(x+3)-(x+3)=0

=>(x+3)(4x-1)=0

=>\(\left[\begin{array}{l}x+3=0\\ 4x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-3\\ x=\frac14\end{array}\right.\)

b: \(x^2+4x=0\)

=>x(x+4)=0

=>\(\left[\begin{array}{l}x=0\\ x+4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-4\end{array}\right.\)

c: \(9x^2-\left(2x-1\right)^2=0\)

=>\(\left(3x\right)^2-\left(2x-1\right)^2=0\)

=>(3x-2x+1)(3x+2x-1)=0

=>(x+1)(5x-1)=0

=>\(\left[\begin{array}{l}x+1=0\\ 5x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-1\\ x=\frac15\end{array}\right.\)

d: \(\left(x^3-1\right)-\left(x-1\right)\left(x^2-5\right)=0\)

=>\(\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-5\right)=0\)

=>\(\left(x-1\right)\left(x^2+x+1-x^2+5\right)=0\)

=>(x-1)(x+6)=0

=>\(\left[\begin{array}{l}x-1=0\\ x+6=0\end{array}\right.=>\left[\begin{array}{l}x=1\\ x=-6\end{array}\right.\)

3 giờ trước (18:27)

a; ABCD là hình thang cân

=>\(\hat{A}=\hat{B};\hat{C}=\hat{D}\)

\(\hat{A}+\hat{B}=\frac12\left(\hat{C}+\hat{D}\right)\)

=>\(2\cdot\hat{B}=\frac12\left(\hat{C}+\hat{C}\right)=\frac12\cdot2\cdot\hat{C}=\hat{C}\)

Ta có: AB//CD

=>\(\hat{B}+\hat{C}=180^0\)

=>\(\hat{B}+2\cdot\hat{B}=180^0\)

=>\(3\cdot\hat{B}=180^0\)

=>\(\hat{B}=60^0\)

\(\hat{C}=2\cdot\hat{B}=2\cdot60^0=120^0\)

\(\hat{D}=\hat{C}=120^0\)

\(\hat{A}=\hat{B}=60^0\)

b: ΔCAB vuông tại C

=>\(\hat{CAB}+\hat{CBA}=90^0\)

=>\(\hat{CAB}=90^0-60^0=30^0\)

Ta có: tia AC nằm giữa hai tia AD và AB

=>\(\hat{DAC}+\hat{BAC}=\hat{DAB}\)

=>\(\hat{DAC}=60^0-30^0=30^0\)

ta có: \(\hat{DAC}=\hat{BAC}\left(=30^0\right)\)

=>AC là phân giác của góc BAD

c: ta có: DC//AB

=>\(\hat{DCA}=\hat{CAB}\) (hai góc so le trong)

=>\(\hat{DCA}=30^0=\hat{DAC}\)

=>ΔDAC cân tại D

=>DC=DA

=>AD=a

Ta có: ABCD là hình thang cân

=>AD=BC

=>BC=a

Xét ΔCAB vuông tại C có \(\sin BAC=\frac{BC}{AB}\)

=>\(\frac{a}{AB}=\sin30=\frac12\)

=>AB=2a

ΔCAB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(CA^2=\left(2a\right)^2-a^2=3a^2\)

=>\(CA=a\sqrt3\)

Diện tích tam giác DAC là:

\(S_{DAC}=\frac12\cdot DA\cdot DC\cdot\sin ADC=\frac12\cdot a\cdot a\cdot\sin120=\frac{a^2\sqrt3}{4}\)

Diện tích tam giác ACB là:

\(S_{ACB}=\frac12\cdot CA\cdot CB=\frac12\cdot a\sqrt3\cdot a=\frac{a^2\sqrt3}{2}\)

Diện tích tam giác ABCD là:

\(S_{ABCD}=S_{DAC}+S_{CAB}=\frac{a^2\sqrt3}{4}+\frac{a^2\sqrt3}{2}=\frac{3a^2\sqrt3}{4}\)