K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 giờ trước (18:27)

a; ABCD là hình thang cân

=>\(\hat{A}=\hat{B};\hat{C}=\hat{D}\)

\(\hat{A}+\hat{B}=\frac12\left(\hat{C}+\hat{D}\right)\)

=>\(2\cdot\hat{B}=\frac12\left(\hat{C}+\hat{C}\right)=\frac12\cdot2\cdot\hat{C}=\hat{C}\)

Ta có: AB//CD

=>\(\hat{B}+\hat{C}=180^0\)

=>\(\hat{B}+2\cdot\hat{B}=180^0\)

=>\(3\cdot\hat{B}=180^0\)

=>\(\hat{B}=60^0\)

\(\hat{C}=2\cdot\hat{B}=2\cdot60^0=120^0\)

\(\hat{D}=\hat{C}=120^0\)

\(\hat{A}=\hat{B}=60^0\)

b: ΔCAB vuông tại C

=>\(\hat{CAB}+\hat{CBA}=90^0\)

=>\(\hat{CAB}=90^0-60^0=30^0\)

Ta có: tia AC nằm giữa hai tia AD và AB

=>\(\hat{DAC}+\hat{BAC}=\hat{DAB}\)

=>\(\hat{DAC}=60^0-30^0=30^0\)

ta có: \(\hat{DAC}=\hat{BAC}\left(=30^0\right)\)

=>AC là phân giác của góc BAD

c: ta có: DC//AB

=>\(\hat{DCA}=\hat{CAB}\) (hai góc so le trong)

=>\(\hat{DCA}=30^0=\hat{DAC}\)

=>ΔDAC cân tại D

=>DC=DA

=>AD=a

Ta có: ABCD là hình thang cân

=>AD=BC

=>BC=a

Xét ΔCAB vuông tại C có \(\sin BAC=\frac{BC}{AB}\)

=>\(\frac{a}{AB}=\sin30=\frac12\)

=>AB=2a

ΔCAB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(CA^2=\left(2a\right)^2-a^2=3a^2\)

=>\(CA=a\sqrt3\)

Diện tích tam giác DAC là:

\(S_{DAC}=\frac12\cdot DA\cdot DC\cdot\sin ADC=\frac12\cdot a\cdot a\cdot\sin120=\frac{a^2\sqrt3}{4}\)

Diện tích tam giác ACB là:

\(S_{ACB}=\frac12\cdot CA\cdot CB=\frac12\cdot a\sqrt3\cdot a=\frac{a^2\sqrt3}{2}\)

Diện tích tam giác ABCD là:

\(S_{ABCD}=S_{DAC}+S_{CAB}=\frac{a^2\sqrt3}{4}+\frac{a^2\sqrt3}{2}=\frac{3a^2\sqrt3}{4}\)

16 giờ trước (9:47)

a: ta có: EI⊥BF

AC⊥BF

Do đó: EI//AC

=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{KBE}=\hat{IEB}\)

Xét ΔKBE vuông tại K và ΔIEB vuông tại I có

BE chung

\(\hat{KBE}=\hat{IEB}\)

Do đó: ΔKBE=ΔIEB

=>EK=BI

b: Điểm D ở đâu vậy bạn?

16 giờ trước (9:47)

a: ta có: EI⊥BF

AC⊥BF

Do đó: EI//AC

=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{KBE}=\hat{IEB}\)

Xét ΔKBE vuông tại K và ΔIEB vuông tại I có

BE chung

\(\hat{KBE}=\hat{IEB}\)

Do đó: ΔKBE=ΔIEB

=>EK=BI

4 giờ trước (22:46)

bạn vào câu hỏi của mik xem chat vs ns đi


3 giờ trước (22:47)

tội bn

8 giờ trước (18:11)

Bài 2:

a: ĐKXĐ: x∉{2;-2}

b: \(A=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2x-4}{x^2-4}\)

\(=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2}{x+2}=\frac{3x}{x-2}\)

c: Thay x=-5 vào A, ta được:

\(A=\frac{3\cdot\left(-5\right)}{-5-2}=\frac{-15}{-7}=\frac{15}{7}\)

d: Để A nguyên thì 3x⋮x-2

=>3x-6+6⋮x-2

=>6⋮x-2

=>x-2∈{1;-1;2;-2;3;-3;6-6}

=>x∈{1;2;4;0;5;-1;8;-4}

Kết hợp ĐKXĐ, ta được: x∈{1;4;0;5;-1;8;-4}

Bài 1:

a: \(A=x^2+10x+25\)

\(=x^2+2\cdot x\cdot5+5^2=\left(x+5\right)^2\)

b: \(B=x^2-y^2+8x-8y\)

=(x-y)(x+y)+8(x-y)

=(x-y)(x+y+8)

c: \(C=x^2+4x-5\)

\(=x^2+5x-x-5\)

=x(x+5)-(x+5)

=(x+5)(x-1)

12 giờ trước (14:38)

làm bài 10 và bài 11 cần gấp ạ


8 giờ trước (18:20)

bài 13:

a: Xét tứ giác AMHN có \(\hat{AMH}=\hat{ANH}=\hat{MAN}=90^0\)

nên AMHN là hình chữ nhật

b: Xét ΔAMH vuông tại M và ΔAMD vuông tại M có

AM chung

MH=MD

Do đó: ΔAMH=ΔAMD

=>\(\hat{MAH}=\hat{MAD}\)

=>AM là phân giác của góc HAD

=>\(\hat{HAD}=2\cdot\hat{HAM}\)

Xét ΔANH vuông tại N và ΔANE vuông tại N có

AN chung

NH=NE

Do đó: ΔANH=ΔANE

=>\(\hat{NAH}=\hat{NAE}\)

=>AN là phân giác của góc HAE

=>\(\hat{HAE}=2\cdot\hat{HAN}\)

Ta có: \(\hat{DAE}=\hat{DAH}+\hat{EAH}\)

\(=2\left(\hat{HAN}+\hat{HAM}\right)=2\cdot\hat{NAM}=180^0\)

=>D,A,E thẳng hàng

c: ΔAHM=ΔADM

=>AH=AD

ΔANH=ΔANE

=>AH=AE

Xét ΔAHB và ΔADB có

AH=AD

\(\hat{HAB}=\hat{DAB}\)

AB chung

Do đó: ΔAHB=ΔADB

=>\(\hat{AHB}=\hat{ADB}\)

=>\(\hat{ADB}=90^0\)

=>BD⊥AD

=>BD⊥ DE(2)

Xét ΔAHC và ΔAEC có

AH=AE

\(\hat{HAC}=\hat{EAC}\)

AC chung

Do đó: ΔAHC=ΔAEC

=>\(\hat{AHC}=\hat{AEC}\)

=>\(\hat{AEC}=90^0\)

=>CE⊥ DE(1)

Từ (1),(2) suy ra BD//CE

=>BDEC là hình thang

d: Xét ΔHED có

N,M lần lượt là trung điểm của HE,HD

=>NM là đường trung bình của ΔHED
=>ED=2MN=MN+AH

Bài 12:

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

Hình bình hành ABDC có \(\hat{BAC}=90^0\)

nên ABDC là hình chữ nhật

b: ABDC là hình chữ nhật

=>AB//DC và AB=DC

AB//DC

=>DC//BE

ta có: AB=DC

AB=BE

Do đó: DC=BE

Xét tứ giác BCDE có

BE//DC

BE=DC

Do đó: BCDE là hình bình hành

c: DK=2BK

DK+BK=DB

Do đó: DB=2BK+BK=3BK

=>\(\frac{DK}{DB}=\frac23\)

Xét ΔADE có

DB là đường trung tuyến

\(DK=\frac23DB\)

Do đó: K là trọng tâm của ΔADE

Xét ΔADE có

K là trọng tâm

M là trung điểm của AD

Do đó: E,K,M thẳng hàng

=>EK,AD,BC đồng quy

6 giờ trước (20:27)

đúng rồi

mà bạn đổi quà lần nào ngoài lần này chưa

6 giờ trước (20:28)

Olm chào em, nay đang là thứ bảy cuối tuần, đang là ngày nghỉ lễ theo quy định nhà nước. Sang thứ hai Olm mới làm việc, em nhé. Chỉ có cô Hoài là trực 24/24 thôi

4 giờ trước (22:39)

vaiz ns lừa dc bn r á mik lừa lại ns dc 50xu nhưng lại chuyển cho cô hoài thật rồi

4 giờ trước (22:39)

tiếc cho bạn:(