K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi G là giao điểm của BC và OI

I đối xứng với O qua BC

=>BC là đường trung trực của OI

=>BO=BI và CO=CI

mà BO=CO

nên BO=BI=CO=CI

=>BOCI là hình thoi

=>OI⊥BC tại G và G là trung điểm chung của OI và BC

Gọi K là giao điểm thứ hai của AO với (O)

=>AK là đường kính của (O)

Xét (O) có

ΔABK nội tiếp

AK là đường kính

Do đó: ΔABK vuông tại B

=>BK⊥BA

mà CH⊥BA

nên BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

Do đó: ΔACK vuông tại C

=>CK⊥CA

mà BH⊥CA

nên BH//CK

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

mà G là trung điểm của BC

nên G là trung điểm của HK

Xét ΔKAH có

O,G lần lượt là trung điểm của KA,KH

=>OG là đường trung bình của ΔKAH

=>AH=2OG

mà OI=2OG

nên AH=OI

Ta có: AH⊥BC

OI⊥BC

Do đó: AH//OI

Xét tứ giác AHIO có

AH//OI

AH=OI

Do đó: AHIO là hình bình hành

=>HI//AO

Gọi giao điểm của AD và CB là K

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC⊥KB tại C

Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

=>BD⊥KA tại D

Xét ΔKAB có

AC,BD là các đường cao

AC cắt BD tại E

Do đó: E là trực tâm của ΔAKB

=>KE⊥AB tại M

Xét ΔAME vuông tại M và ΔACB vuông tại C có

\(\hat{MAE}\) chung

Do đó: ΔAME~ΔACB

=>\(\frac{AM}{AC}=\frac{AE}{AB}\)

=>\(AM\cdot AB=AE\cdot AC\)

Xét ΔBME vuông tại M và ΔBDA vuông tại D có

\(\hat{MBE}\) chung

DO đó: ΔBME~ΔBDA

=>\(\frac{BM}{BD}=\frac{BE}{BA}\)

=>\(BD\cdot BE=BM\cdot BA\)

\(AE\cdot AC+BD\cdot BE\)

\(=AM\cdot AB+BM\cdot AB\)

\(=AB\left(AM+BM\right)=AB^2\) không đổi khi E di chuyển trong (O)

a: Xét (O) có

AD,BC là các dây không song song

AB//CD

Do đó: sđ cung AD=sđ cung BC

b: Ta có: ABCD là tứ giác nội tiếp

=>\(\hat{ADC}+\hat{ABC}=180^0\)

\(\hat{ABC}+\hat{BCD}=180^0\) (hai góc trong cùng phía, AB//CD)

nên \(\hat{ADC}=\hat{BCD}\)

Hình thang ABCD có \(\hat{ADC}=\hat{BCD}\)

nên ABCD là hình thang cân

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

NV
2 tháng 9

Xét trường hợp D nằm ngoài OC (trường hợp còn lại em tự xét).

a.

Do đường tròn đường kính OA cắt OC tại D nên ∠ADO là góc nt chắn nửa đường tròn

\(\Rightarrow\angle ADO=90^0\Rightarrow\angle ADC=90^0\)

=>D thuộc đường tròn đường kính AC (1)

Do CH⊥AB tại H nên \(\angle AHC=90^0\Rightarrow\) H thuộc đường tròn đường kính AC (2)

(1),(2) =>4 điểm A,C,D,H đồng viên

b.

Do A,C,D,H đồng viên (cmt) nên ∠ACD=∠AHD (cùng chắn AD) (3)

Lại có OA=OC (cùng là bán kính của (O)) =>ΔOAC cân tại O

=>∠ACD=∠CAO (4)

(3),(4) =>∠AHD=∠CAO

=>HD song song AC (hai góc so le trong bằng nhau)


NV
2 tháng 9

a: Xét (O) có

ΔABP nội tiếp

AP là đường kính

Do đó: ΔABP vuông tại B

=>BA⊥BP

mà CH⊥BA

nên CH//BP

Xét (O) có

ΔACP nội tiếp

AP là đường kính

Do đó: ΔACP vuông tại C

=>CP⊥CA

mà BH⊥CA

nên BH//CP

Xét tứ giác BHCP có

BH//CP

BP//CH

Do đó: BHCP là hình bình hành

Gọi HP cắt CB tại I

BHCP là hình bình hành

=>BC cắt HP tại trung điểm của mỗi đường

=>I là trung điểm chung của HP và BC

Xét (O) có

ΔAKP nội tiếp

AP là đường kính

Do đó: ΔAKP vuông tại K

=>AK⊥KP

mà AK⊥BC

nên PK//BC

Xét ΔHKP có

I là trung điểm của HP

DI//KP

Do đó: D là trung điểm của HK

=>DH=DK

b: Xét ΔCKH có

CD là đường cao

CD là đường trung tuyến

Do đó: ΔCKH cân tại C

=>CH=CK

mà CH=BP

nên BP=CK

Xét tứ giác BCPK có

BC//PK

BP=CK

Do đó: BCPK là hình thang cân

28 tháng 8

Bạn học CMATH phải không vậy bạn? Mình thấy phiếu quen quen.

28 tháng 8

Bạn học CMATH phải không vậy bạn? Mình thấy quen quen.

28 tháng 8

ĐÂY LÀ CMATH phải không