K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác APMQ có \(\hat{APM}=\hat{AQM}=\hat{PAQ}=90^0\)

nên APMQ là hình chữ nhật

a: Xét tứ giác AEDF có \(\hat{AED}=\hat{AFD}=\hat{FAE}=90^0\)

nên AEDF là hình chữ nhật

b: AEDF là hình chữ nhật

=>DF//AE và DF=AE

DF//AE

=>GF//AE
Ta có DF=AE

DF=FG

Do đó: GF=AE

Xét tứ giác AEFG có

AE//FG

AE=FG

Do đó: AEFG là hình bình hành

c: AEDF là hình chữ nhật

=>AD cắt EF tại trung điểm của mỗi đường

mà H là trung điểm của AD

nên H là trung điểm của FE

AEDF là hình chữ nhật

=>AD=FE
\(HA=HD=\frac{AD}{2};HF=HE=\frac{EF}{2}\)

nên \(HA=HD=HF=HE=\frac{EF}{2}=\frac{AD}{2}\)

HI=HF

\(HF=HA\)

\(HA=\frac{AD}{2}\)

Do đó: \(IH=\frac{AD}{2}\)

Xét ΔIAD có

IH là đường trung tuyến

\(IH=\frac{AD}{2}\)

Do đó: ΔIAD vuông tại I

=>IA⊥ID

a: Xét ΔCAD vuông tại A và ΔCED vuông tại E có

CD chung

\(\hat{ACD}=\hat{ECD}\)

Do đó: ΔCAD=ΔCED

=>CA=CE

b: ΔCAD=ΔCED

=>DA=DE

Xét ΔDAF vuông tại A và ΔDEB vuông tại E có

DA=DE

AF=BE

Do đó: ΔDAF=ΔDEB

=>\(\hat{ADF}=\hat{EDB}\)

\(\hat{EDB}+\hat{ADE}=180^0\) (hai góc kề bù)

nên \(\hat{ADF}+\hat{ADE}=180^0\)

=>F,D,E thẳng hàng

c: AM là phân giác của góc BAC

=>\(\hat{BAM}=\hat{CAM}=\frac12\cdot\hat{BAC}=\frac{90^0}{2}=45^0\)

Xét tứ giác NMBA có \(\hat{NMB}+\hat{NAB}=90^0+90^0=180^0\)

nên NMBA là tứ giác nội tiếp

=>\(\hat{MNB}=\hat{MAB}=45^0\)

Xét ΔMNB vuông tại M có \(\hat{MNB}=45^0\)

nên ΔMNB vuông cân tại M

=>MN=MB

a: \(x^2+8x+16=x^2+2\cdot x\cdot4+4^2=\left(x+4\right)^2\)

b: \(9x^2-24x+16=\left(3x\right)^2-2\cdot3x\cdot4+4^2=\left(3x-4\right)^2\)

c: \(x^2-3x+\frac94=x^2-2\cdot x\cdot\frac32+\left(\frac32\right)^2=\left(x-\frac32\right)^2\)

d: \(4x^2y^4-4xy^3+y^2\)

\(=\left(2xy^2\right)^2-2\cdot2xy^2\cdot y+y^2\)

\(=\left(2xy^2-y\right)^2\)

e: \(\left(x-2y\right)^2-4\left(x-2y\right)+4\)

\(=\left(x-2y\right)^2-2\cdot\left(x-2y\right)\cdot2+2^2\)

\(=\left(x-2y-2\right)^2\)

f: \(\left(x+3y\right)^2-12xy\)

\(=x^2+6xy+9y^2-12xy\)

\(=x^2-6xy+9y^2=\left(x-3y\right)^2\)

13 tháng 8

a) Số tiền Linh dùng mua bút bi:

50000 - 20000 = 30000 (đồng)

Giá tiền mỗi bút chì sau khi giảm:

x - 1000 (đồng)

Phân thức biểu thị số bút chì Linh mua được:

loading...

Phân thức biểu thị số bút bi Linh mua được:

loading...

b) Với x = 3000, số bút bi Linh mua được:

30000 : 3000 = 10 (bút)

Bài 1:

a: \(A=x^2-4x+9\)

\(=x^2-4x+4+5\)

\(=\left(x-2\right)^2+5\ge5\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\frac12+\frac14+\frac34\)

\(=\left(x-\frac12\right)^2+\frac34\ge\frac34\forall x\)

Dấu '=' xảy ra khi \(x-\frac12=0\)

=>\(x=\frac12\)

Bài 2:

a: \(M=4x-x^2+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left(x-2\right)^2+7\le7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(P=2x-2x^2-5\)

\(=-2\cdot\left(x^2-x+\frac52\right)\)

\(=-2\left(x^2-x+\frac14+\frac94\right)\)

\(=-2\left(x-\frac12\right)^2-\frac92\le-\frac92\forall x\)

Dấu '=' xảy ra khi \(x-\frac12=0\)

=>\(x=\frac12\)

Bài 3:

a: \(A=x^2-4x+24\)

\(=x^2-4x+4+20\)

\(=\left(x-2\right)^2+20\ge20\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(B=2x^2-8x+1\)

\(=2\left(x^2-4x+\frac12\right)\)

\(=2\left(x^2-4x+4-\frac72\right)\)

\(=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

c: \(C=3x^2+x-1\)

\(=3\left(x^2+\frac13x-\frac13\right)\)

\(=3\left(x^2+2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)

\(=3\left(x+\frac16\right)^2-\frac{13}{12}\ge-\frac{13}{12}\forall x\)

Dấu '=' xảy ra khi \(x+\frac16=0\)

=>\(x=-\frac16\)

Bài 4:

a: \(A=-5x^2-4x+1\)

\(=-5\left(x^2+\frac45x-\frac15\right)\)

\(=-5\left(x^2+2\cdot x\cdot\frac25+\frac{4}{25}-\frac{9}{25}\right)\)

\(=-5\left(x+\frac25\right)^2+\frac95\le\frac95\forall x\)

Dấu '=' xảy ra khi \(x+\frac25=0\)

=>\(x=-\frac25\)

b: \(B=-3x^2+x+1\)

\(=-3\left(x^2-\frac13x-\frac13\right)\)

\(=-3\left(x^2-2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)

\(=-3\left(x-\frac16\right)^2+\frac{13}{12}\le\frac{13}{12}\forall x\)

Dấu '=' xảy ra khi \(x-\frac16=0\)

=>\(x=\frac16\)