
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 14:
\(A\left(x\right)+B\left(x\right)=5x^4-6x^3-3x^2-4\)
\(A\left(x\right)-B\left(x\right)=3x^4+7x^2+8x+2\)
Do đó: \(A\left(x\right)+B\left(x\right)+A\left(x\right)-B\left(x\right)=5x^4-6x^3-3x^2-4+3x^4+7x^2+8x+2\)
=>\(2\cdot A\left(x\right)=8x^4-6x^3+4x^2+8x-2\)
=>\(A\left(x\right)=4x^4-3x^3+2x^2+4x-1\)
Ta có: \(A\left(x\right)+B\left(x\right)=5x^4-6x^3-3x^2-4\)
=>\(B\left(x\right)=5x^4-6x^3-3x^2-4-4x^4+3x^3-2x^2-4x-1\)
=>\(B\left(x\right)=x^4-3x^3-5x^2-4x-5\)
Bài 13:
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\)
\(f\left(x\right)-g\left(x\right)=4x^4-6x^3+7x^2+8x-9\)
Do đó: \(f\left(x\right)+g\left(x\right)+f\left(x\right)-g\left(x\right)=6x^4-3x^2-5+4x^4-6x^3+7x^2+8x-9\)
=>\(2\cdot f\left(x\right)=10x^4-6x^3+4x^2+8x-14\)
=>\(f\left(x\right)=5x^4-3x^3+2x^2+4x-7\)
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\)
=>\(g\left(x\right)=6x^4-3x^2-5-5x^4+3x^3-2x^2-4x+7=x^4+3x^3-5x^2-4x+2\)

\(a.\frac12+\frac32x=\frac34\)
\(\frac32x=\frac34-\frac12=\frac14\)
\(x=\frac14:\frac32=\frac14\cdot\frac23=\frac16\)
\(b.2,5-2\cdot\left(x-0,5\right)=2\)
\(2\cdot\left(x-0,5\right)=2,5-2=0,5\)
\(x-0,5=0,5:2=0,25\)
\(x=0,25+0,5=0,75\)
\(c.\left(x+\frac32\right)^3=\frac{125}{8}=\left(\frac52\right)^3\)
\(x+\frac32=\frac52\)
\(x=\frac52-\frac32=\frac22=1\)
\(d.\left(x-\frac13\right)^2=\frac{25}{4}=\left(\pm\frac52\right)^2\)
\(\left[\begin{array}{l}x-\frac13=\frac52\Rightarrow x=\frac{17}{6}\\ x-\frac13=-\frac52\Rightarrow x=-\frac{13}{6}\end{array}\right.\)
vậy \(x\in\left\lbrace\frac{17}{6};-\frac{13}{6}\right\rbrace\)
\(e.7\cdot3^{x-1}-3^{x+2}=-540\)
\(3^{x-1}\cdot\left(7-3^3\right)=-540\)
\(3^{x-1}\cdot\left(7-27\right)=-540\)
\(3^{x-1}\cdot\left(-20\right)=-540\)
\(3^{x-1}=\left(-540\right):\left(-20\right)\)
\(3^{x-1}=27=3^3\)
⇒ x - 1 = 3
⇒ x = 4

\(\frac{x}{10}=\frac{y}{5}\)
=>\(\frac{x}{2}=\frac{y}{1}\)
=>\(\frac{x}{4}=\frac{y}{2}\)
mà \(\frac{y}{2}=\frac{z}{3}\)
nên \(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\)
mà 2x-3y+4z=350
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}=\frac{2x-3y+4z}{2\cdot4-3\cdot2+4\cdot3}=\frac{350}{14}=25\)
=>\(\begin{cases}x=25\cdot4=100\\ y=25\cdot2=50\\ z=25\cdot3=75\end{cases}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}=\frac{a+b-c+a+c-b+b+c-a}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
=>\(\begin{cases}a+b-c=c\\ a+c-b=b\\ b+c-a=a\end{cases}\Rightarrow\begin{cases}a+b=2c\\ a+c=2b\\ b+c=2a\end{cases}\)
\(A=\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}=\frac{2a\cdot2b\cdot2c}{abc}=8\)

Bài 8:
Chu vi đáy là:
3,5+3,5+3+6=7+9=16(cm)
Diện tích xung quanh là: \(16\cdot11,5=184\left(\operatorname{cm}^2\right)\)
Bài 9:
Diện tích đáy là:
\(S=\frac12\cdot7\cdot24=12\cdot7=84\left(m^2\right)\)
Thể tích của khối bê tông là:
\(84\cdot22=1848\left(m^3\right)\)
Số tiền phải trả là:
\(1848\cdot2500000=4620000000\) (đồng)

Cách 1: ta có: \(\hat{yAB}+\hat{y^{\prime}AB}=180^0\) (hai góc kề bù)
=>\(\hat{y^{\prime}AB}=180^0-105^0=75^0\)
ta có: \(\hat{y^{\prime}AB}=\hat{x^{\prime}Bz}\left(=75^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên Ay//Bz
=>yy'//Bz
Cách 2:
Ta có: \(\hat{x^{\prime}Bz}+\hat{xBz}=180^0\) (hai góc kề bù)
=>\(\hat{xBz}=180^0-75^0=105^0\)
Ta có: \(\hat{xBz}=\hat{yAB}\left(=105^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ay//Bz
=>yy'//Bz
\(a.\frac47-\frac47:\frac{5}{14}=\frac47-\frac47\cdot\frac{14}{5}\)
\(=\frac47\cdot\left(1-\frac{14}{5}\right)=\frac47\cdot\left(-\frac95\right)=-\frac{36}{35}\)
\(b.\left(-\frac57\right)^2+8\cdot\left(0,5\right)^3+\left(-1\right)^{2025}=\frac{25}{49}+8\cdot0,125-1\)
\(=\frac{25}{49}+1-1=\frac{25}{49}\)
\(c.\left(1-\frac35\right)^2-\left(-\frac34\right)+\left(-\frac{13}{10}\right)=\left(\frac25\right)^2+\frac34-\frac{13}{10}\)
\(=\frac{4}{25}+\frac34-\frac{13}{10}=\frac{16}{100}+\frac{75}{100}-\frac{130}{100}=\frac{16+75-130}{100}=-\frac{39}{100}\)
\(d.\left(-\frac35+\frac49\right):\frac{7}{11}+\left(-\frac25+\frac59\right):\frac{7}{11}=-\frac{7}{45}\cdot\frac{11}{7}+\frac{7}{45}\cdot\frac{11}{7}\)
\(=\frac{11}{7}\cdot\left(\frac{7}{45}-\frac{7}{45}\right)=\frac{11}{7}\cdot0=0\)